Skip to main content
Log in

Genes encoding the production of extracellular polysaccharide bioflocculant are clustered on a 30-kb DNA segment in Bacillus licheniformis

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Bioflocculants are special high-molecular weight polymers produced by microorganisms. Despite the fact that several types of bioflocculants from different species of bacteria have been reported, there is a large gap in our knowledge regarding the molecular machine responsible for the production of bioflocculants. To investigate genes involved in bioflocculant synthesis, a fosmid library was generated from Bacillus licheniformis genomic DNA and screened for the production of bioflocculant. Four positive clones with distinct flocculation were isolated by a two-pooling scheme. The clone with 662 U ml−1 flocculating activity was sequenced. As a result, a 30-kb fragment with 26 hypothetical genes was identified in the bioflocculant-producing clone. Most of the predicted proteins encoded by the inserted genes showed significant homology with enzymes involved in the biosynthesis of polysaccharide. Based on these homologies, a biosynthesis pathway and two gene clusters involved in the production of the polysaccharide bioflocculant were proposed with the integration of functional descriptions of individual genes by metabolic databases, and a glucose-sensitive glycosidases was predicted. This research supplied significant data for potential application of bioflocculant-producing strains in wastewater refining and industrial downstream treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abranches J, Chen YY, Burne RA (2004) Galactose metabolism by Streptococcus mutans. Appl Environ Microbiol 70(10):6047–6052

    Article  PubMed  CAS  Google Scholar 

  • Allard ST, Giraud MF, Naismith JH (2001) Epimerases structure, function and mechanism. Cell Mol Life Sci 58:1650–1665

    Article  PubMed  CAS  Google Scholar 

  • Allen MS, Welch KT, Prebyl BS, Baker DC, Meyers AJ, Sayler GS (2004) Analysis and glycosyl composition of the exopolysaccharide isolated from the floc-forming wastewater bacterium Thauera sp. MZ1T. Environ Microbiol 6(8):780–790

    Article  PubMed  CAS  Google Scholar 

  • Anna Skorupska MJ, Małgorzata M, Andrzej M, Jaroslaw K (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Micro Cell Fact 5(1):7–25

    Article  Google Scholar 

  • Bauer FF, Govender P, Bester MC (2010) Yeast flocculation and its biotechnological relevance. Appl Microbiol Biotechnol 88(1):31–39

    Article  PubMed  CAS  Google Scholar 

  • Birgit V, Christina H, Silke S, Jörg Feesche KHM, Petra E, Sebastian B, Anke H, Heiko L, Rainer M, Armin E, Gerhard G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microb Biotech 7(4):204–211

    Article  Google Scholar 

  • Cosa S, Mabinya LV, Olaniran AO, Okoh OO, Bernard K, Deyzel S, Okoh AI (2011) Bioflocculant production by Virgibacillus sp. Rob isolated from the bottom sediment of Algoa Bay in the Eastern Cape, South Africa. Molecules 16(3):2431–2442

    Article  PubMed  CAS  Google Scholar 

  • Cuthbertson L, Kimber MS, Whitfield C (2007) Substrate binding by a bacterial ABC transporter involved in polysaccharide export. Proc Natl Acad Sci U S A 104(49):19529–19534

    Article  PubMed  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962

    Article  CAS  Google Scholar 

  • Erlich Y, Chang K, Gordon A, Ronen R, Navon O, Rooks M, Hannon GJ (2009) DNA Sudoku-harnessing high-throughput sequencing for multiplexed specimen analysis. Genome Res 19(7):1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Erni B (2012) The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. J Iran Cheml Soc 10(3):593–630

    Article  Google Scholar 

  • Fazli M, McCarthy Y, Givskov M, Ryan RP, Tolker-Nielsen T (2013) The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349. MicrobiologyOpen 2(1):105–122

    Article  PubMed  CAS  Google Scholar 

  • Glucksmann MA, Reuber TL, Walker GC (1993) Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J Bacteriol 175(21):7033–7044

    PubMed  CAS  Google Scholar 

  • Hansen SF, Bettler E, Rinnan A, Engelsen SB, Breton C (2010) Exploring genomes for glycosyltransferases. Mol Biosyst 6(10):1773–1781

    Article  PubMed  CAS  Google Scholar 

  • Hay ID, Ur Rehman Z, Ghafoor A, Rehm BHA (2010) Bacterial biosynthesis of alginates. J ChemTech Biotech 85(6):752–759

    Article  CAS  Google Scholar 

  • Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55(3):739–749

    Article  PubMed  CAS  Google Scholar 

  • Kolkman MA, Morrison DA, Van Der Zeijst BA, Nuijten PJ (1996) The capsule polysaccharide synthesis locus of streptococcus pneumoniae serotype 14: identification of the glycosyl transferase gene cps14E. J Bacteriol 178(13):3736–3741

    PubMed  CAS  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47(2):103–1017

    Article  PubMed  CAS  Google Scholar 

  • Kurane R, Hatamochik K, Kakuno T, Kiyohara M, Kawaguchi K, Mizuno Y, Hirano M, Taniguchi Y (1994) Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci Biotechl Bioch 58(11):1977–1982

    Article  CAS  Google Scholar 

  • Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19(8):597–625

    Article  PubMed  CAS  Google Scholar 

  • Leivers S, Hidalgo-Cantabrana C, Robinson G, Margolles A, Ruas-Madiedo P, Laws AP (2011) Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster. Carbohydr Res 346(17):2710–2717

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Kinoshita T (2008) Dolichol-phosphate mannose synthase: structure, function and regulation. Biochim Biophys Acta 1780(6):861–868

    Article  PubMed  CAS  Google Scholar 

  • Marvasi M, Visscher PT, Casillas Martinez L (2010) Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS microbiol Lett 313(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Matilla MA, Travieso ML, Ramos JL, Ramos-Gonzalez MI (2011) Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 13(7):1745–1766

    Article  PubMed  CAS  Google Scholar 

  • Meng G, Fütterer K (2003) Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Mol Biol 10(11):935–941

    Article  CAS  Google Scholar 

  • Park C, Novak JT (2009) Characterization of lectins and bacterial adhesins in activated sludge flocs. Water Environ Res 81(8):755–764

    Article  PubMed  CAS  Google Scholar 

  • Petit AC (2005) Modifications d'un exopolysaccharide biosynthétisé par une bactérie issue des écosystèmes Hydrothermaux profonds. Dissertation. Université de Rennes

  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35(4):340–355

    Article  PubMed  CAS  Google Scholar 

  • Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CRH, Rick PD (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Biotechnol 4(12):495–503

    CAS  Google Scholar 

  • Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme Microb Tech 39(2):197–207

    Article  CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2002) Isolation and characterisation of a bioflocculant produced by Bacillus firmus. Biotechnol Lett 24:35–40

    Article  CAS  Google Scholar 

  • Salehizadeh H, Vossoughi M, Alemzadeh I (2000) Some investigations on bioflocculant producing bacteria. Biochem Eng J 5:39–44

    Article  CAS  Google Scholar 

  • Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28(6):882–894

    Article  PubMed  CAS  Google Scholar 

  • Shih IL, Van YT, Yeh LC, Lin HG, Chang YN (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour Technol 78:267–372

    Article  PubMed  CAS  Google Scholar 

  • Subramanian SB, Yan S, Tyagi RD, Surampalli RY, Lohani BN (2008) Isolation and molecular identification of extracellular polymeric substances (EPS) producing bacterial strains for sludge settling and dewatering. J Environ Sci Heal 43(13):1495–1503

    Article  CAS  Google Scholar 

  • Tao F, Swarup S, Zhang LH (2010) Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ Microbiol 12(12):3159–3170

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Miyagi M, Makiya H, Watanabe H, Arakawa G (2009) Digestive beta-glucosidases from the wood-feeding higher termite, Nasutitermes takasagoensis: intestinal distribution, molecular characterization, and alteration in sites of expression. Insect Biochem Mol Biol 39(12):931–937

    Article  PubMed  CAS  Google Scholar 

  • Vorhölter F-J, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J (2008) The genome of Xanthomonas campestris sp. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotech 134(1):33–45

    Article  Google Scholar 

  • Wenyu L, Tong Z, Dongyan Z, Caihong L, Jianping W, Lianxiang D (2005) A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension. Biochem Eng J 27(1):1–7

    Article  Google Scholar 

  • Xiaoling Z, Yuanpeng W, Qingbiao L, Shan Y, Ning H (2012) The production of bioflocculants by Bacillus licheniformis using molasses and its application in the sugarcane industry. Biotechnol Bioproc E 17(5):1041–1047

    Article  Google Scholar 

  • Yokoi H, Natsuda O, Hirose J, Hayashi S, Takasak Y (1995) Characteristics of a biopolymer flocculant produced by Bacillus sp. PY-90. J Biosci Bioeng 79(4):378–380

    CAS  Google Scholar 

  • Yuyan X, Yuanpeng W, Yi Y, Qingbiao L, Haitao W, Ronghui C, Ning H (2010) Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl Environ Microbiol 76(9):2778–2782

    Article  Google Scholar 

  • Zeng L, Das S, Burne RA (2010) Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression. J Bacteriol 192(9):2434–2444

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, Xue P, Stanhope MJ, Burne RA (2013) A galactose-specific sugar: phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans. Mol Oral Microbiol 28(4):292–301

    Article  PubMed  CAS  Google Scholar 

  • Zhu F, Wu R, Zhang H, Wu H (2013) Structural and biochemical analysis of a bacterial glycosyltransferase. Methods Mol Biol 1022:29–39

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (2013CB733505), Xiamen Science and Technology committee (3502Z20121021), National natural science foundation of China (51378444) and Shenzhen Science and Technology Research Project (JC201005280412A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanpeng Wang or Ning He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Wang, N., Chen, Z. et al. Genes encoding the production of extracellular polysaccharide bioflocculant are clustered on a 30-kb DNA segment in Bacillus licheniformis . Funct Integr Genomics 13, 425–434 (2013). https://doi.org/10.1007/s10142-013-0333-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-013-0333-4

Keywords

Navigation