Skip to main content
Log in

Novel role of NADPH oxidase in ischemic myocardium: a study with Nox2 knockout mice

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Several potential sources of reactive oxygen species (ROS) in cells exist. One source is NADPH oxidase, which is especially important for superoxide radical production. Nox2 is a primary regulatory subunit of NADPH oxidase. In the present study, we examined the role of ROS and NADPH oxidase in ischemic preconditioning (IP)-mediated cardioprotection by using Nox2−/− mice. Both wild-type (WT) and Nox2−/− mice were subjected to either 30 min of ischemia followed by 2 h of reperfusion (IR) or IP prior to 30 min ischemia and 2 h of reperfusion. Reduction in left ventricular developed pressure (60.1 versus 63 mmHg), dp/dt max (893 versus 1,027 mmHg/s), and aortic flow (0.9 versus 1.8 ml/min) was observed in Nox2−/−IPIR compared to WTIPIR along with increased infarct size (33% versus 22%) and apoptosis after 120 min of reperfusion. Differentially regulated genes were demonstrated by comparing gene expression in WTIPIR versus Nox2−/− IPIR hearts. Selected differentially regulated genes such as β-catenin, SRPK3, ERDR1, ACIN1, Syntaxin-8, and STC1 were validated by real-time PCR. Taken together, this is the first report identifying important, differentially expressed genes during ischemic preconditioning in Nox2−/− mice by using microarray analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addya S, Shiroto K, Turoczi T, Zhan L, Kaga S, Fukuda S, Surrey S, Duan L, Fong G, Yamamoto F (2005) Ischemic preconditioning-mediated cardioprotection is disrupted in heterozygous Flt-1 (VEGFR-1) knockout mice. J Mol Cell Cardiol 38(2):345–351

    Article  PubMed  CAS  Google Scholar 

  • Adluri RS, Thirunavukkarasu M, Dunna NR, Zhan L, Oriowo B, Takeda K, Sanchez J, Otani H, Maulik G, Fong GH, Maulik N (2010) Disruption of HIF-prolyl hydroxylase-1 (PHD-1−/−) attenuates ex vivo myocardial ischemia/reperfusion injury through HIF-1alpha transcription factor and its target genes in mice. Antioxid Redox Signal. 15(7):1789–1797

    Google Scholar 

  • Anilkumar N, Sirker A, Shah A (2009) Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci J Virtual Library 14:3168–3187

    Article  CAS  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  PubMed  CAS  Google Scholar 

  • Bell R, Cave A, Johar S, Hearse D, Shah A, Shattock M (2005) Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. FASEB J 19:2037–2039

    PubMed  CAS  Google Scholar 

  • Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8(5–6):691–728

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Gabel S, Steenbergen C, Murphy E (1995) A redox-based mechanism for cardioprotection induced by ischemic preconditioning in perfused rat heart. Circ Res 77(2):424

    Article  PubMed  CAS  Google Scholar 

  • Frantz S, Brandes RP, Hu K, Rammelt K, Wolf J, Scheuermann H, Ertl G, Bauersachs J (2006) Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91PHOX. Basic Res Cardiol 101(2):127–132

    Article  PubMed  CAS  Google Scholar 

  • Fukuda S, Kaga S, Sasaki H, Zhan L, Zhu L, Otani H, Kalfin R, Das DK, Maulik N (2004) Angiogenic signal triggered by ischemic stress induces myocardial repair in rat during chronic infarction. J Mol Cell Cardiol 36(4):547–559

    Article  PubMed  CAS  Google Scholar 

  • Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM (2002) Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc Natl Acad Sci U S A 99(3):1182–1187

    Article  PubMed  CAS  Google Scholar 

  • Giordano F (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508

    PubMed  CAS  Google Scholar 

  • Grazia Lampugnani M, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F, Orsenigo F, Cattelino A, Kemler R, Daniel TO, Dejana E (2003) Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 161(4):793–804

    Article  PubMed  Google Scholar 

  • Hausenloy D, Yellon D (2008) Preconditioning and postconditioning: new strategies for cardioprotection. Diabetes Obes Metab 10(6):451–459

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Yamashita C, Matsumoto C, Kwak CJ, Fujii K, Hirata T, Miyamura M, Mori T, Ukimura A, Okada Y, Matsumura Y, Kitaura Y (2008) Role of gp91phox-containing NADPH oxidase in left ventricular remodeling induced by intermittent hypoxic stress. Am J Physiol Heart Circ Physiol 294(5):H2197–H2203

    Article  PubMed  CAS  Google Scholar 

  • Koskivirta I, Kassiri Z, Rahkonen O, Kiviranta R, Oudit GY, McKee TD, Kyto V, Saraste A, Jokinen E, Liu PP, Vuorio E, Khokha R (2010) Mice with tissue inhibitor of metalloproteinases 4 (Timp4) deletion succumb to induced myocardial infarction but not to cardiac pressure overload. J Biol Chem 285(32):24487–24493

    Article  PubMed  CAS  Google Scholar 

  • La Porta C (2010) AQP1 is not only a water channel: It contributes to cell migration through Lin7/beta-catenin. Cell Adh Migr 4(2):204–206

    Article  PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    Article  PubMed  CAS  Google Scholar 

  • Lassegue B, Clempus R (2003) Vascular NAD (P) H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285(2):277

    Google Scholar 

  • Li J, Zuan W, Yan R, Tropak MB, Jean-st-Michel J, Liang W, Gladstone R, Backx PH, Kharbanda RK and Redington AN (2011) Remote preconditioning provides potent cardioprotection via PI3K/Akt activation and is associated with nuclear accumulation of b-catenin. Clin Sci (Lond) 120:451–462

    Google Scholar 

  • Maulik N (2004) Ischemic preconditioning mediated angiogenic response in the heart. Antioxid Redox Signal 6(2):413–421

    Article  PubMed  CAS  Google Scholar 

  • Mohazzab-H K, Kaminski P, Wolin M (1997) Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase. Circulation 96(2):614

    Article  PubMed  CAS  Google Scholar 

  • Moncho-Amor V, Ibanez de Caceres I, Bandres E, Martinez-Poveda B, Orgaz JL, Sanchez-Perez I, Zazo S, Rovira A, Albanell J, Jimenez B, Rojo F, Belda-Iniesta C, Garcia-Foncillas J, Perona R (2011) DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer. Oncogene 30(6):668–678

    Article  PubMed  CAS  Google Scholar 

  • Murry C, Richard V, Jennings R, Reimer K (1988) Preconditioning with ischemia: is the protective effect mediated by free radical-induced myocardial stunning. Circulation 78(Suppl II):77

    Google Scholar 

  • Nakagami H, Jensen KS, Liao JK (2003) A novel pleiotropic effect of statins: prevention of cardiac hypertrophy by cholesterol-independent mechanisms. Ann Med 35(6):398–403

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa O, Arnold M, Nakagawa M, Hamada H, Shelton JM, Kusano H, Harris TM, Childs G, Campbell KP, Richardson JA, Nishino I, Olson EN (2005) Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev 19(17):2066–2077

    Article  PubMed  CAS  Google Scholar 

  • Nakano A, Cohen M, Downey J (2000) Ischemic preconditioning: from basic mechanisms to clinical applications. Pharmacol Ther 86(3):263–275

    Article  PubMed  CAS  Google Scholar 

  • Nawroth R, Poell G, Ranft A, Kloep S, Samulowitz U, Fachinger G, Golding M, Shima DT, Deutsch U, Vestweber D (2002) VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J 21(18):4885–4895

    Article  PubMed  CAS  Google Scholar 

  • Otani H (2008) Ischemic preconditioning: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 10(2):207–248

    Article  PubMed  CAS  Google Scholar 

  • Penna C, Mancardi D, Rastaldo R, Pagliaro P (2009) Cardioprotection: a radical view Free radicals in pre and postconditioning. Biochim Biophys Acta 1787(7):781–793

    Article  PubMed  CAS  Google Scholar 

  • Peralta C, Bulbena O, Xaus C, Prats N, Cutrin J, Poli G, Gelpi E, Rosello-Catafau J (2002) Ischemic preconditioning: a defense mechanism against the reactive oxygen species generated after hepatic ischemia reperfusion1. Transplantation 73(8):1203

    Article  PubMed  CAS  Google Scholar 

  • Petry A, Weitnauer M, Gorlach A (2010) Receptor activation of NADPH oxidases. Antioxid Redox Signal 13(4):467–487

    Article  PubMed  CAS  Google Scholar 

  • Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187

    Article  PubMed  CAS  Google Scholar 

  • Ran X, Wang H, Chen Y, Zeng Z, Zhou Q, Zheng R, Sun J, Wang B, Lv X, Liang Y, Zhang K, Liu W (2010) Aquaporin-1 expression and angiogenesis in rabbit chronic myocardial ischemia is decreased by acetazolamide. Hear Vessel 25(3):237–247

    Article  Google Scholar 

  • Rhee S (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31(2):53

    PubMed  CAS  Google Scholar 

  • Sako K, Fukuhara S, Minami T, Hamakubo T, Song H, Kodama T, Fukamizu A, Gutkind JS, Koh GY, Mochizuki N (2009) Angiopoietin-1 induces Kruppel-like factor 2 expression through a phosphoinositide 3-kinase/AKT-dependent activation of myocyte enhancer factor 2. J Biol Chem 284(9):5592–5601

    Article  PubMed  CAS  Google Scholar 

  • Skurk C, Maatz H, Rocnik E, Bialik A, Force T, Walsh K (2005) Glycogen-synthase kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. Circ Res 96(3):308–318

    Article  PubMed  CAS  Google Scholar 

  • Thirunavukkarasu M, Addya S, Juhasz B, Pant R, Zhan L, Surrey S, Maulik G, Menon V, Maulik N (2008a) Heterozygous disruption of Flk-1 receptor leads to myocardial ischaemia reperfusion injury in mice: application of affymetrix gene chip analysis. J Cell Mol Med 12(4):1284–1302

    Article  PubMed  CAS  Google Scholar 

  • Thirunavukkarasu M, Han Z, Zhan L, Penumathsa SV, Menon VP, Maulik N (2008b) Adeno-sh-beta-catenin abolishes ischemic preconditioning-mediated cardioprotection by downregulation of its target genes VEGF, Bcl-2, and survivin in ischemic rat myocardium. Antioxid Redox Signal 10(8):1475–1484

    Article  PubMed  CAS  Google Scholar 

  • Van Gelder R, von Zastrow M, Yool A, Dement W, Barchas J, Eberwine J (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 87(5):1663

    Article  PubMed  Google Scholar 

  • Vanden Hoek T, Becker L, Shao Z, Li C, Schumacker P (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273(29):18092

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Huang L, Abdelrahim M, Cai Q, Truong A, Bick R, Poindexter B, Sheikh-Hamad D (2009) Stanniocalcin-1 suppresses superoxide generation in macrophages through induction of mitochondrial UCP2. J Leukoc Biol 86(4):981–988

    Article  PubMed  CAS  Google Scholar 

  • Westberg JA, Serlachius M, Lankila P, Andersson LC (2007) Hypoxic preconditioning induces elevated expression of stanniocalcin-1 in the heart. Am J Physiol Heart Circ Physiol 293(3):H1766–H1771

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Bohanan CS, Neumann JC, Lingrel JB (2008) KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 283(7):3942–3950

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Lindsberg PJ, Tatlisumak T, Kaste M, Olsen HS, Andersson LC (2000) Stanniocalcin: a molecular guard of neurons during cerebral ischemia. Proc Natl Acad Sci U S A 97(7):3637–3642

    PubMed  CAS  Google Scholar 

  • Zhang M, Brewer AC, Schroder K, Santos CX, Grieve DJ, Wang M, Anilkumar N, Yu B, Dong X, Walker SJ, Brandes RP, Shah AM (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci U S A 107(42):18121–18126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institute of Health (USA) grants HL-56803, HL-69910, and HL-85804 to NM.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjana Maulik.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

Top 5 gene networks with high scores (>10) in WTIR versus Nox2−/− IR comparison. (DOC 29 kb)

Table S2

Top 5 gene networks with high scores (>10) in WTIPIR versus Nox2−/− IPIR comparison. (DOC 29 kb)

Table S3

Functional analysis of the differentially expressed genes identified in WTIR versus Nox2−/− IR comparison. (DOC 94 kb)

Table S4

Functional analysis of the differentially expressed genes identified in WTIPIR versus Nox2−/− IPIR comparison. (DOC 115 kb)

Table S5

Pathway analysis of the genes affected in WTIR versus Nox2−/− IR comparison. (DOC 122 kb)

Table S6

Pathway analysis of the genes affected in WTIPIR versus Nox2−/− IPIR comparison. (DOC 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirunavukkarasu, M., Adluri, R.S., Juhasz, B. et al. Novel role of NADPH oxidase in ischemic myocardium: a study with Nox2 knockout mice. Funct Integr Genomics 12, 501–514 (2012). https://doi.org/10.1007/s10142-011-0256-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-011-0256-x

Keywords

Navigation