Skip to main content

Advertisement

Log in

Hyperbaric Oxygen Upregulates Mst1 to Activate Keap1/Nrf2/HO-1 Pathway Resisting Oxidative Stress in a Rat Model of Acute Myocardial Infarction

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the protective effects and mechanisms of hyperbaric oxygen (HBO) preconditioning in a rat model of acute myocardial infarction (MI) established by ligation of the left anterior descending (LAD) coronary artery. Microarray, real-time PCR, and western blotting (WB) results demonstrated that the Mst1 gene was downregulated in the heart tissue of the MI rat model. HBO preconditioning significantly increased Mst1 expression in cardiac tissues of rats after MI modeling. Lentiviral infection was used to silence the Mst1 gene in rats treated with HBO to probe the effect of Mst1 on HBO cardioprotection. HBO preconditioning decreased heart infarct size and ameliorated cardiac function in MI rats, whereas Mst1 silencing reversed the effect of HBO administration, as indicated after heat infarct size determination via TTC staining, histological examination via HE staining, and measurements of cardiac function. HBO preconditioning reduced oxidative stress and inflammation in cardiac tissue of MI rat model, evidenced by alteration of malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), and protein carbonyl contents, as well as production of inflammation-associated myeloperoxidase (MPO), IL-1β, and TNF-α. These findings provide a new signaling mechanism through which HBO preconditioning can protect against acute MI injury through the Mst1-mediating Keap1/Nrf2/HO-1-dependent antioxidant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author [Di Li], upon reasonable request.

References

  1. Wu, X., Reboll, M. R., Korf-Klingebiel, M., & Wollert, K. C. (2021). Angiogenesis after acute myocardial infarction. Cardiovascular Research, 117, 1257–1273.

    Article  CAS  PubMed  Google Scholar 

  2. Tuk, B., Tong, M., Fijneman, E. M., & van Neck, J. W. (2014). Hyperbaric oxygen therapy to treat diabetes impaired wound healing in rats. PLoS ONE, 9, e108533.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Kimmel, H. M., Grant, A., & Ditata, J. (2016). The presence of oxygen in wound healing. Wounds, 28, 264–270.

    PubMed  Google Scholar 

  4. Yümün, G., Kahraman, C., Kahraman, N., Yalçınkaya, U., Akçılar, A., Akgül, E., & Vural, A. H. (2016). Effects of hyperbaric oxygen therapy combined with platelet-rich plasma on diabetic wounds: An experimental rat model. Archives of Medical Science, 12, 1370–1376.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sun, Q., Sun, Q., Liu, Y., Sun, X., & Tao, H. (2011). Anti-apoptotic effect of hyperbaric oxygen preconditioning on a rat model of myocardial infarction. Journal of Surgical Research, 171, 41–46.

    Article  CAS  PubMed  Google Scholar 

  6. Dotsenko, E., Nikulina, N., Salivonchik, D., Lappo, O., Gritsuk, A., & Bastron, A. (2015). Low doses of hyperbaric oxygenation effectively decrease the size of necrotic zone in rats with experimental myocardial infarction. Bulletin of Experimental Biology and Medicine, 158, 732–734.

    Article  CAS  PubMed  Google Scholar 

  7. Bennett, M. H., Lehm, J. P., & Jepson, N. (2015). Hyperbaric oxygen therapy for acute coronary syndrome. Cochrane Database of Systematic Reviews, 2015(7), 4818.

    Google Scholar 

  8. Chen, C., Huang, L., Nong, Z., Li, Y., Chen, W., Huang, J., Pan, X., Wu, G., & Lin, Y. (2017). Hyperbaric oxygen prevents cognitive impairments in mice induced by d-galactose by improving cholinergic and anti-apoptotic functions. Neurochemical Research, 42, 1240–1253.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, X., Li, Y., Chen, W., Nong, Z., Huang, J., & Chen, C. (2016). Protective effect of hyperbaric oxygen on cognitive impairment induced by d-galactose in mice. Neurochemical Research, 41, 3032–3041.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, J., Chen, W., Zhou, X., Li, Y., Nong, Z., Zhou, L., Wei, X., Pan, X., Chen, C., & Lu, W. (2022). Hyperbaric oxygen protects against PC12 and H9C2 cell damage caused by oxygen–glucose deprivation/reperfusion via the inhibition of cell apoptosis and autophagy. Biocell, 46, 137.

    Article  CAS  Google Scholar 

  11. Yu, W., Xu, M., Zhang, T., Zhang, Q., & Zou, C. (2019). Mst1 promotes cardiac ischemia–reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. The Journal of Physiological Sciences, 69, 113–127.

    Article  CAS  PubMed  Google Scholar 

  12. McClatchey, A. I., & Giovannini, M. (2005). Membrane organization and tumorigenesis—The NF2 tumor suppressor, Merlin. Genes and Development, 19, 2265–2277.

    Article  CAS  PubMed  Google Scholar 

  13. Rothzerg, E., Ingley, E., Mullin, B., Xue, W., Wood, D., & Xu, J. (2021). The Hippo in the room: Targeting the Hippo signalling pathway for osteosarcoma therapies. Journal of Cellular Physiology, 236, 1606–1615.

    Article  CAS  PubMed  Google Scholar 

  14. Hui, Q., Karlstetter, M., Xu, Z., Yang, J., Zhou, L., Eilken, H. M., Terjung, C., Cho, H., Gong, J., & Lai, M. J. (2020). Inhibition of the Keap1-Nrf2 protein–protein interaction protects retinal cells and ameliorates retinal ischemia–reperfusion injury. Free Radical Biology and Medicine, 146, 181–188.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, B., Zhang, J., Strom, J., Lee, S., & Chen, Q. M. (2014). Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease, 1842, 1638–1647.

    Article  CAS  PubMed  Google Scholar 

  16. Shyu, K.-G., Lu, M.-J., Chang, H., Sun, H.-Y., Wang, B.-W., & Kuan, P. (2005). Carvedilol modulates the expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in a rat model of volume-overload heart failure. Journal of Cardiac Failure, 11, 152–159.

    Article  CAS  PubMed  Google Scholar 

  17. Bouachour, G., Cronier, P., Gouello, J. P., Toulemonde, J. L., Talha, A., & Alquier, P. (1996). Hyperbaric oxygen therapy in the management of crush injuries: A randomized double-blind placebo-controlled clinical trial. Journal of Trauma, 41, 333–339.

    Article  CAS  PubMed  Google Scholar 

  18. Gao, S., Li, G., Shao, Y., Wei, Z., Huang, S., Qi, F., Jiao, Y., Li, Y., Zhang, C., & Du, J. (2021). FABP5 deficiency impairs mitochondrial function and aggravates pathological cardiac remodeling and dysfunction. Cardiovascular Toxicology, 21, 619–629.

    Article  CAS  PubMed  Google Scholar 

  19. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  20. Neri, M., Fineschi, V., Di Paolo, M., Pomara, C., Riezzo, I., Turillazzi, E., & Cerretani, D. (2015). Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Current Vascular Pharmacology, 13, 26–36.

    Article  CAS  PubMed  Google Scholar 

  21. Baird, L., & Yamamoto, M. (2020). The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol, 40(13), e00099-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radice, S., Rossoni, G., Oriani, G., Michael, M., Chiesara, E., & Berti, F. (1997). Hyperbaric oxygen worsens myocardial low flow ischemia–reperfusion injury in isolated rat heart. European Journal of Pharmacology, 320, 43–49.

    Article  CAS  PubMed  Google Scholar 

  23. Maffei Facino, R., Carini, M., Aldini, G., Berti, F., & Rossoni, G. (1999). Panax ginseng administration in the rat prevents myocardial ischemia–reperfusion damage induced by hyperbaric oxygen: Evidence for an antioxidant intervention. Planta Medica, 65, 614–619.

    Article  CAS  PubMed  Google Scholar 

  24. Han, C., Lin, L., Zhang, W., Zhang, L., Lv, S., Sun, Q., Tao, H., Zhang, J. H., & Sun, X. (2008). Hyperbaric oxygen preconditioning alleviates myocardial ischemic injury in rats. Experimental Biology and Medicine (Maywood, N.J.), 233, 1448–1453.

    Article  CAS  PubMed  Google Scholar 

  25. Cabigas, B. P., Su, J., Hutchins, W., Shi, Y., Schaefer, R. B., Recinos, R. F., Nilakantan, V., Kindwall, E., Niezgoda, J. A., & Baker, J. E. (2006). Hyperoxic and hyperbaric-induced cardioprotection: Role of nitric oxide synthase 3. Cardiovascular Research, 72, 143–151.

    Article  CAS  PubMed  Google Scholar 

  26. Jeysen, Z. Y., Gerard, L., Levant, G., Cowen, M., Cale, A., & Griffin, S. (2011). Research report: The effects of hyperbaric oxygen preconditioning on myocardial biomarkers of cardioprotection in patients having coronary artery bypass graft surgery. Undersea and Hyperbaric Medicine, 38, 175–185.

    PubMed  Google Scholar 

  27. Yin, X., Wang, X., Fan, Z., Peng, C., Ren, Z., Huang, L., Liu, Z., & Zhao, K. (2015). Hyperbaric oxygen preconditioning attenuates myocardium ischemia–reperfusion injury through upregulation of heme oxygenase 1 expression: PI3K/Akt/Nrf2 pathway involved. Journal of Cardiovascular Pharmacology and Therapeutics, 20, 428–438.

    Article  CAS  PubMed  Google Scholar 

  28. Latunde-Dada, G. O. (2017). Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochimica et Biophysica Acta General Subjects, 1861, 1893–1900.

    Article  CAS  PubMed  Google Scholar 

  29. Souza-Neto, F. V., Islas, F., Jiménez-González, S., Luaces, M., Ramchandani, B., Romero-Miranda, A., Delgado-Valero, B., Roldan-Molina, E., Saiz-Pardo, M., Cerón-Nieto, M., Ortega-Medina, L., Martínez-Martínez, E., & Cachofeiro, V. (2022). Mitochondrial oxidative stress promotes cardiac remodeling in myocardial infarction through the activation of endoplasmic reticulum stress. Antioxidants (Basel), 11, 1232.

    Article  CAS  PubMed  Google Scholar 

  30. Brazão, V., Colato, R. P., Santello, F. H., Vale, GTd., Gonzaga, Nd. A., Tirapelli, C. R., & Prado Jr, JCd. (2018). Effects of melatonin on thymic and oxidative stress dysfunctions during Trypanosoma cruzi infection. Journal of Pineal Research, 65, e12510.

    Article  PubMed  Google Scholar 

  31. Ding, M., Ning, J., Feng, N., Li, Z., Liu, Z., Wang, Y., Wang, Y., Li, X., Huo, C., & Jia, X. (2018). Dynamin-related protein 1-mediated mitochondrial fission contributes to post-traumatic cardiac dysfunction in rats and the protective effect of melatonin. Journal of Pineal Research, 64, e12447.

    Article  Google Scholar 

  32. Yao, H., He, Q., Huang, C., Wei, S., Gong, Y., Li, X., Liu, W., Xu, Z., Wu, H., & Zheng, C. (2022). Panaxatriol saponin ameliorates myocardial infarction-induced cardiac fibrosis by targeting Keap1/Nrf2 to regulate oxidative stress and inhibit cardiac-fibroblast activation and proliferation. Free Radical Biology and Medicine, 190, 264–275.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JL and YL designed the research plan. JL, YL, SW, ZZ, and DL performed the experiments and analyzed the data. DL wrote the manuscript.

Corresponding author

Correspondence to Di Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

All procedures were approved by the Animal Care and Use Committee of Affiliated Hospital of Hebei Engineering University.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, Y., Wu, S. et al. Hyperbaric Oxygen Upregulates Mst1 to Activate Keap1/Nrf2/HO-1 Pathway Resisting Oxidative Stress in a Rat Model of Acute Myocardial Infarction. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01050-8

Keywords

Navigation