Skip to main content
Log in

Alternating temperature breaks dormancy in leafy spurge seeds and impacts signaling networks associated with HY5

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Non-after-ripened seeds of the herbaceous perennial weed leafy spurge do not germinate when imbibed at a constant temperature (C), but transfer to an alternating temperature (A) induced germination. Changes in the transcriptome of seeds during 1 and 3 days of alternating temperature and germinated seeds were compared with seeds incubated at constant temperature. Statistical analysis revealed that 597, 1,491, and 1,329 genes were differentially expressed (P < 0.05) for the comparisons of 21-day C vs. 21-day C + 1-day A, 21-day C vs. 21-day C + 3-day A, and 21-day C vs. 21-day C + Germ (germination), respectively. Functional classifications based on gene set and sub-network enrichment analysis were performed to identify pathways and gene sub-networks that underlie transcriptome changes in the seeds as they germinate. Sugars, plant hormones, photomorphogenesis, and reactive oxygen species were overrepresented at 21-day C + 1-day A. At 21-day C + 3-day A, an increase in cellular activities was observed as the number of overrepresented pathways greatly increased. Many of the metabolic pathways were involved in the biosynthesis of amino acids, macromolecules, and energy and carbon skeleton production for subsequent germination. The 21-day C + 3-day A and 21-day C + Germ pathways and sub-networks were similar and included an overrepresentation of the amino acid biosynthetic pathways; however, 21-day C + Germ seeds have an even wider array of cellular activities such as translation-related pathways, which are most likely for seedling growth. RT-qPCR analysis indicated that the up- and down-regulation of HISTONE H3, GASA2, DREBIII-1, CHS, AOS, PIF3, PLD α1, and LEA may be germination-related since their expression was dramatically changed only in the 21-day C + Germ seeds. Finally, both short-term alternating temperature and short-term light exposure up-regulated the expression targets of the central hub HY5 in leafy spurge and Arabidopsis, respectively, indicating that a signaling network involving HY5 is important for germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alabadí D, Blázquez MA (2009) Molecular interactions between light and hormone signaling to control plant growth. Plant Mol Biol 69:409–417

    Article  PubMed  Google Scholar 

  • Anderson JV, Horvath DP, Chao WS, Foley ME, Hernandez AG, Thimmapuram J, Liu L, Gong GL, Band M, Kim R, Mikel MA (2007) Characterization of an EST database for the perennial weed leafy spurge: an important resource for weed biology research. Weed Sci 55:193–203

    Article  CAS  Google Scholar 

  • Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE (2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18:1038–1051

    Article  PubMed  CAS  Google Scholar 

  • Bentsink L, Koornneef M (2008) Seed dormancy and germination. In: Last R (ed) The Arabidopsis book. American Society for Plant Biologists, Rockville, pp 1–18

    Google Scholar 

  • Bush PB, Grunwald C (1972) Sterol changes during germination of Nicotiana tabacum seeds. Plant Physiol 50:69–72

    Article  PubMed  CAS  Google Scholar 

  • CABI (2004) Euphorbia esula (original text by Chao W and Anderson JV). In: Crop Protection Compendium, 2004 edition. CAB International, Wallingford

  • Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    Article  PubMed  CAS  Google Scholar 

  • Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, Holdsworth MJ (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J 53:214–224

    Article  PubMed  CAS  Google Scholar 

  • Chakauya E, Coxon KM, Whitney HM, Ashurst JL, Abell C, Smith AG (2006) Pantothenate biosynthesis in higher plants: advances and challenges. Physiol Plant 126:319–329

    Article  CAS  Google Scholar 

  • Chao WS (2008) Real-time PCR as a tool to study weed biology. Weed Sci 56:290–296

    Article  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2004) AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis. Plant Physiol 135:1020–1026

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nature Genet 32:490–495

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (2002) Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14:1995–2000

    Article  PubMed  CAS  Google Scholar 

  • Disch A, Schwender J, Muller C, Lichtenthaler HK, Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388

    PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. PNAS 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Gibson SI (2002) ABA and sugar interactions regulating development: “cross-talk” or “voices in a crowd”? Curr Opin Plant Biol 5:26–32

    Article  PubMed  CAS  Google Scholar 

  • Foley ME, Chao WS (2008) Growth regulators and chemicals stimulate germination of leafy spurge (Euphorbia esula) seeds. Weed Sci 56:516–522

    Article  CAS  Google Scholar 

  • Foley ME, Anderson JV, Chao WS, Horvath DP (2010) Initial changes in the transcriptome of Euphorbia esula seeds induced to germinate with a combination of constant and diurnal alternating temperatures. Plant Mol Biol 73:131–142

    Article  PubMed  CAS  Google Scholar 

  • Footitt S, Marquez J, Schmuths HY, Baker A, Theodoulou FL, Holdsworth M (2006) Analysis on the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. J Exp Bot 57:2805–2814

    Article  PubMed  CAS  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ (2008a) Molecular networks regulating Arabidopsis seed maturation, afterripening, dormancy and germination. New Phytol 179:33–54

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008b) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13

    Article  PubMed  CAS  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536

    Article  PubMed  Google Scholar 

  • Jander G, Joshi V (2010) Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol Plant 3:54–65

    Article  PubMed  CAS  Google Scholar 

  • Katoh A, Uenohara K, Akita M, Hashimoto T (2006) Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141:851–857

    Article  PubMed  CAS  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  PubMed  CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    Article  PubMed  CAS  Google Scholar 

  • Leitch JA, Leistritz FL, Bangsund DA (1996) Economic effect of leafy spurge in the Upper Great Plains: methods, models, and results. Impact Assess 14:419–433

    Google Scholar 

  • Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    Article  PubMed  CAS  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  PubMed  CAS  Google Scholar 

  • Martin RC, Pluskota WE, Honogaki H (2010) Seed germination. In: Pua EC, Davey MR (eds) Plant developmental biology—biotechnological perspectives. Springer, Heidelberg, pp 383–404

    Chapter  Google Scholar 

  • Masubelele NH, Dewitte W, Menges M, Maughan S, Collins C, Huntley R, Nieuwland J, Scofield S, Murray JAH (2005) D-type cyclins activate division in the root apex to promote seed germination in Arabidopsis. Proc Natl Acad Sci USA 102:15694–15699

    Article  PubMed  CAS  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460

    Article  PubMed  CAS  Google Scholar 

  • Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150:1855–1865

    Article  PubMed  Google Scholar 

  • Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Métraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286

    Article  PubMed  CAS  Google Scholar 

  • Noctor G (2006) Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Yamaguchi S, Hu JH, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62:39–51

    Article  PubMed  CAS  Google Scholar 

  • Oracz K, Bouteau HEM, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek LACJ (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Gakière B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. PNAS 95:7805–7812

    Article  PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JMS, Murray JAH (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  PubMed  CAS  Google Scholar 

  • Russell L, Larner V, Kurup S, Bougourd S, Holdsworth MJ (2000) The Arabidopsis COMATOSE locus regulates germination potential. Development 127:3759–3767

    PubMed  CAS  Google Scholar 

  • Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun TP, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J 48:354–366

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Nambara E, Choi G, Yamaguchi S (2009) Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69:463–472

    Article  PubMed  CAS  Google Scholar 

  • Shinohara K, Tomioka M, Nakano H, Toné S, Ito H, Kawashima S (1996) Apoptosis induction resulting from proteasome inhibition. Biochem J 317:385–388

    PubMed  CAS  Google Scholar 

  • Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14:1017–1031

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102:15545–15550

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe GC, Mclntosh L (1996) Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria. Plant Physiol 111:589–595

    PubMed  CAS  Google Scholar 

  • Wobus U, Weber H (1999) Seed maturation: genetic programmes and control signals. Curr Opin Plant Biol 2:33–38

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    Article  PubMed  CAS  Google Scholar 

  • You KS (1985) Stereospecificity for nicotinamide nucleotides in enzymatic and chemical hydride transfer reactions. CRC Crit Rev Biochem 17:313–451

    Article  PubMed  CAS  Google Scholar 

  • Yuryev A, Mulyukov Z, Kotelnikova E, Maslov S, Egorov S, Nikitin A, Daraselia N, Mazo I (2006) Automatic pathway building in biological association networks. BMC Bioinforma 7:1–13

    Article  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. PNAS 106:4543–4548

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zhang W, Zhao Y, Gong X, Guo L, Zhu G, Wang X, Gong Z, Schumaker KS, Guo Y (2007) SAD2, an importin -like protein, is required for UV-B response in Arabidopsis by mediating MYB4 nuclear trafficking. Plant Cell 19:3805–3818

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Wayne Sargent, Brant Bigger, Cheryl Huckle, and Barry Hoffer for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wun S. Chao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 103 kb)

ESM 2

(XLS 3429 kb)

ESM 3

(XLS 73 kb)

ESM 4

(XLS 2824 kb)

ESM 5

(XLS 2825 kb)

ESM 6

(XLS 2822 kb)

ESM 7

(XLS 2825 kb)

ESM 8

(XLS 2816 kb)

ESM 9

(XLS 2820 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, W.S., Foley, M.E., Doğramacı, M. et al. Alternating temperature breaks dormancy in leafy spurge seeds and impacts signaling networks associated with HY5. Funct Integr Genomics 11, 637–649 (2011). https://doi.org/10.1007/s10142-011-0253-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-011-0253-0

Keywords

Navigation