Skip to main content
Log in

Molecular interactions between light and hormone signaling to control plant growth

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

As sessile organisms, plants modulate their growth rate and development according to the continuous variation in the conditions of their surrounding environment, an ability referred to as plasticity. This ability relies on a web of interactions between signaling pathways triggered by endogenous and environmental cues. How changes in environmental factors are interpreted by the plant in terms of developmental or growth cues or, in other words, how they contribute to plant plasticity is a current, major question in plant biology. Light stands out among the environmental factors that shape plant development. Plants have evolved systems that allow them to monitor both quantitative and qualitative differences in the light that they perceive, that render important changes in their growth habit. In this review we focus on recent findings about how information from this environmental cue is integrated during de-etiolation and in the shade-avoidance syndrome, and modulated by several hormone pathways—the endogenous cues. In some cases the interaction between a hormone and the light signaling pathways is reciprocal, as is the case of the gibberellin pathway, whereas in other cases hormone pathways act downstream of the environmental cue to regulate growth. Moreover, the circadian clock adds an additional layer of regulation, which has been proposed to integrate the information provided by light with that provided by hormone pathways, to regulate daily growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Alabadí D, Gil J, Blázquez MA, García-Martínez JL (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Alabadí D, Gallego-Bartolomé J, García-Cárcel L, Orlando L, Rubio V, Martínez C, Frigerio M, Iglesias-Pedraz JM, Espinosa A, Deng XW, Blázquez MA (2008) Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53:324–335

    Article  PubMed  CAS  Google Scholar 

  • Ballaré CL, Sánchez RA, Scopel AL, Casal JJ, Ghersa CM (1987) Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ 10:551–557

    Google Scholar 

  • Ballaré CL, Scopel AL, Sánchez RA (1990) Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247:329–332

    Article  PubMed  Google Scholar 

  • Bancos S, Szatmari AM, Castle J, Kozma-Bognar L, Shibata K, Yokota T, Bishop GJ, Nagy F, Szekeres M (2006) Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol 141:299–309

    Article  PubMed  CAS  Google Scholar 

  • Barrero JM, Rodríguez PL, Quesada V, Alabadí D, Blázquez MA, Boutin JP, Marion-Poll A, Ponce MR, Micol JL (2008) The ABA1 gene and carotenoid biosynthesis are required for late skotomorphogenic growth in Arabidopsis thaliana. Plant Cell Environ 31:227–234

    PubMed  CAS  Google Scholar 

  • Bauer D, Viczian A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KC, Adam E, Fejes E, Schafer E, Nagy F (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16:1433–1445

    Article  PubMed  CAS  Google Scholar 

  • Carabelli M, Morelli G, Whitelam G, Ruberti I (1996) Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proc Natl Acad Sci USA 93:3530–3535

    Article  PubMed  CAS  Google Scholar 

  • Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ, Fankhauser C, Coupland G, Blázquez MA (2004) Signalling for developmental plasticity. Trends Plant Sci 9:309–314

    Article  PubMed  CAS  Google Scholar 

  • Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521

    Article  PubMed  CAS  Google Scholar 

  • Cerdán PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  PubMed  CAS  Google Scholar 

  • Covington MF, Harmer SL (2007) The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol 5:e222

    Article  PubMed  CAS  Google Scholar 

  • De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D (2005) Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol 46:827–836

    Article  PubMed  CAS  Google Scholar 

  • de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484

    Article  PubMed  CAS  Google Scholar 

  • Desgagné-Penix I, Eakanunkul S, Coles JP, Phillips AL, Hedden P, Sponsel VM (2005) The auxin transport inhibitor response 3 (tir3) allele of BIG and auxin transport inhibitors affect the gibberellin status of Arabidopsis. Plant J 41:231–242

    Article  PubMed  CAS  Google Scholar 

  • Devlin PF, Patel SR, Whitelam GC (1998) Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10:1479–1487

    Article  PubMed  CAS  Google Scholar 

  • Devlin PF, Robson PR, Patel SR, Goosey L, Sharrock RA, Whitelam GC (1999) Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol 119:909–915

    Article  PubMed  CAS  Google Scholar 

  • Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617–1629

    Article  PubMed  CAS  Google Scholar 

  • Djakovic-Petrovic T, de Wit M, Voesenek LA, Pierik R (2007) DELLA protein function in growth responses to canopy signals. Plant J 51:117–126

    Article  PubMed  CAS  Google Scholar 

  • Dowson-Day MJ, Millar AJ (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17:63–71

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schafer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479

    Article  PubMed  CAS  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA, Whitelam GC (2005) Phytochromes and shade-avoidance responses in plants. Ann Bot (Lond) 96:169–175

    Article  CAS  Google Scholar 

  • Gendron J, Haque A, Gendron N, Chang T, Asami T, Wang Z (2008) Chemical genetic dissection of brassinosteroid–ethylene interaction. Mol Plant 1:368–379

    Article  CAS  PubMed  Google Scholar 

  • Gil J, García-Martínez JL (2000) Light regulation of gibberellin A1 content and expression of genes coding for GA 20-oxidase and GA 3b-hydroxylase in etiolated pea seedlings. Physiol Plant 108:223–229

    Article  CAS  Google Scholar 

  • Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15:1985–1997

    Article  PubMed  CAS  Google Scholar 

  • Halliday KJ, Fankhauser C (2003) Phytochrome-hormonal signalling networks. New Phytol 157:449–463

    Article  CAS  Google Scholar 

  • Hanano S, Domagalska MA, Nagy F, Davis SJ (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 11:1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Hisamatsu T, King RW, Helliwell CA, Koshioka M (2005) The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol 138:1106–1116

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21:2441–2450

    Article  PubMed  CAS  Google Scholar 

  • Jeong DH, Lee S, Kim SL, Hwang I, An G (2007) Regulation of brassinosteroid responses by phytochrome B in rice. Plant Cell Environ 30:590–599

    Article  PubMed  CAS  Google Scholar 

  • Jouve L, Gaspar T, Kevers C, Greppin H, Degli Agosti R (1999) Involvement of indole-3-acetic acid in the circadian growth of the first internode of Arabidopsis. Planta 209:136–142

    Article  PubMed  CAS  Google Scholar 

  • Kanyuka K, Praekelt U, Franklin KA, Billingham OE, Hooley R, Whitelam GC, Halliday KJ (2003) Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant J 35:57–70

    Article  PubMed  CAS  Google Scholar 

  • Khanna R, Shen Y, Marion CM, Tsuchisaka A, Theologis A, Schafer E, Quail PH (2007) The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell 19:3915–3929

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Yi H, Choi G, Shin B, Song PS, Choi G (2003) Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15:2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Knee EM, Hangarter RP, Knee M (2000) Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings. Physiol Plant 108:208–215

    PubMed  CAS  Google Scholar 

  • Knoester M, van Loon LC, van den Heuvel J, Hennig J, Bol JF, Linthorst HJ (1998) Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci USA 95:1933–1937

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100:147–160

    Google Scholar 

  • Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85:183–194

    Article  PubMed  CAS  Google Scholar 

  • Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204

    Article  PubMed  CAS  Google Scholar 

  • Lorrain S, Allen T, Duek P, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    Article  PubMed  CAS  Google Scholar 

  • Martínez-García JF, Santes CM, García-Martínez JL (2000) The end-of-day far-red irradiation increases gibberellin A1 content in cowpea (Vigna sinensis) epicotyls by reducing its inactivation. Physiol Plant 108:426–434

    Google Scholar 

  • Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang Y, Quail PH (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci USA 101:16091–16098

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14:257–271

    PubMed  CAS  Google Scholar 

  • Neff MM, Street IH, Turk EM, Ward JM (2005) Interaction of light and hormone signaling to mediate photomorphogenesis. In: Schafer E, Nagy F (eds) Photomorphogenesis in plants and bacteria—function and signal transduction mechanisms. Dordrecht, Springer, pp 441–445

    Google Scholar 

  • Nemhauser JL (2008) Dawning of a new era: photomorphogenesis as an integrated molecular network. Curr Opin Plant Biol 11:4–8

    Article  PubMed  CAS  Google Scholar 

  • Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361

    Article  PubMed  CAS  Google Scholar 

  • Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Harberd NP (1997) Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis. Plant Physiol 113:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Cuppens ML, Voesenek LA, Visser EJ (2004a) Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol 136:2928–2936

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Whitelam GC, Voesenek LA, de Kroon H, Visser EJ (2004b) Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant–plant signalling. Plant J 38:310–319

    Article  PubMed  CAS  Google Scholar 

  • Reed JW, Foster KR, Morgan PW, Chory J (1996) Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol 112:337–342

    Article  PubMed  CAS  Google Scholar 

  • Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LH (2002) Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol 128:734–741

    Article  PubMed  CAS  Google Scholar 

  • Robson P, Whitelam GC, Smith H (1993) Selected components of the shade-avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa deficient in phytochrome B. Plant Physiol 102:1179–1184

    PubMed  CAS  Google Scholar 

  • Roig-Villanova I, Bou J, Sorin C, Devlin PF, Martínez-García JF (2006) Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis. Plant Physiol 141:85–96

    Article  PubMed  CAS  Google Scholar 

  • Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portolés S, Rodriguez-Concepción M, Martínez-García JF (2007) Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J 26:4756–4767

    Article  PubMed  CAS  Google Scholar 

  • Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426:680–683

    Article  PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446:199–202

    Article  PubMed  CAS  Google Scholar 

  • Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, Becker J, Morelli G, Ruberti I (2005) A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes Dev 19:2811–2815

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Moon J, Huq E (2005) PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant J 44:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Khanna R, Carle CM, Quail PH (2007) Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol 145:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Haegman M, Kurepa J, Van Montagu M, Straeten DV (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci USA 94:2756–2761

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1982) Light quality, photoperception, and plant strategy. Annu Rev Plant Biol 33:481–518

    CAS  Google Scholar 

  • Smith H (1997) The shade-avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840–844

    Article  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  PubMed  CAS  Google Scholar 

  • Symons GM, Reid JB (2003) Hormone levels and response during de-etiolation in pea. Planta 216:422–431

    PubMed  CAS  Google Scholar 

  • Symons GM, Schultz L, Kerckhoffs LH, Davies NW, Gregory D, Reid JB (2002) Uncoupling brassinosteroid levels and de-etiolation in pea. Physiol Plant 115:311–319

    Article  PubMed  CAS  Google Scholar 

  • Symons GM, Smith JJ, Nomura T, Davies NW, Yokota T, Reid JB (2008) The hormonal regulation of de-etiolation. Planta 227:1115–1125

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  PubMed  CAS  Google Scholar 

  • Thain SC, Vandenbussche F, Laarhoven LJ, Dowson-Day MJ, Wang ZY, Tobin EM, Harren FJ, Millar AJ, Van Der Straeten D (2004) Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol 136:3751–3761

    Article  PubMed  CAS  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM (2003) CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol 133:1643–1653

    Article  PubMed  CAS  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34

    Article  PubMed  CAS  Google Scholar 

  • Úbeda-Tomás S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster GT, Hedden P, Bhalerao R, Bennett MJ (2008) Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nat Cell Biol 10:625–628

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M (2007) HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J 49:428–441

    Article  PubMed  CAS  Google Scholar 

  • Vriezen WH, Achard P, Harberd NP, Van Der Straeten D (2004) Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J 37:505–516

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Kollmer I, Bartrina I, Holst K, Schmulling T (2006) New insights into the biology of cytokinin degradation. Plant Biol (Stuttg) 8:371–381

    Article  CAS  Google Scholar 

  • Yi C, Deng XW (2005) COP1—from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol 15:618–625

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT, Xiang J, Weller JL, Liu X, Reid JB, Lin C (2007) A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 145:106–118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Verónica Arana, Juan Carbonell and Jaime Martínez-García for discussions and comments on the manuscript, and we apologize for not including all of our colleagues’ extensive contributions to the field, due to space constrains. Work in the authors’ laboratory is funded by the Spanish Ministry of Science (BIO2007-60923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Blázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alabadí, D., Blázquez, M.A. Molecular interactions between light and hormone signaling to control plant growth. Plant Mol Biol 69, 409–417 (2009). https://doi.org/10.1007/s11103-008-9400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9400-y

Keywords

Navigation