Skip to main content
Log in

Initial changes in the transcriptome of Euphorbia esula seeds induced to germinate with a combination of constant and diurnal alternating temperatures

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We investigated transcriptome changes in Euphorbia esula (leafy spurge) seeds with a focus on the effect of constant and diurnal fluctuating temperature on dormancy and germination. Leafy spurge seeds do not germinate when incubated for 21 days at 20°C constant temperatures, but nearly 30% germinate after 21 days under fluctuating temperatures 20:30°C (16:8 h). Incubation at 20°C for 21 days followed by 20:30°C resulted in approximately 63% germination in about 10 days. A cDNA microarray representing approximately 22,000 unique sequences was used to profile transcriptome changes in the first day after transfer of seeds from constant to alternating temperature conditions. Functional classification based on MIPS and gene ontology revealed active metabolism including up-regulation of energy, protein synthesis, and signal transduction processes. Down-regulated processes included translation elongation, translation, and some biosynthetic processes. Subnetwork analysis identified genes involved in abscisic acid, sugar, and circadian clock signaling as key regulators of physiological activity in seeds soon after the transfer to alternating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A:

Alternating temperature

ABA:

Abscisic acid

ABA1:

ZEAXANTHIN EPOXIDASE

ABI:

ABSCISIC ACID INSENSITIVE

AAO:

ABSCISIC ALDEHYDE OXIDASE

C:

Constant temperature

21 d C + 1 d A:

21 d Constant temperature at 20°C plus 1 d alternating temperature at 20:30°C

CAB1:

CHLOROPHYLL A/B BINDING PROTEIN 1

COP1:

CONSTITUTIVE PHOTOMORPHOGENESIS1

d:

Day

F19K23.21:

APARTYL PROTEASE family protein

GA:

Gibberellic acid

GO:

Gene ontology

GSEA:

Gene set enrichment analysis

GUN:

GENOMES UNCOUPLED

HY5:

LONG HYPOCOTYL 5

LEC1:

LEAFY COTYLEDON 1

LKP2:

LOV KELCH PROTEIN 2

MIPS:

Munich information center for protein sequences

MYB44:

MYB Domain protein 44

NCED:

9-CIS-EPOXYCAROTENOID DIOXYGENASES

PKL:

PICKLE

PRR:

PSEUDO-RESPONSE REGULATOR

SNA:

Subnetwork analysis

SPA1:

SUPPRESSOR OF PHYA-105

S.D.:

Standard deviation

TOC1:

TIMING OF CAB EXPRESSION 1

vs.:

Versus

References

  • Ali-Rachedi S, Bouinot D, Wagner M-H et al (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488

    Article  CAS  PubMed  Google Scholar 

  • Anderson JV, Horvath DP, Chao WS et al (2007) Characterization of an EST database for the perennial weed leafy spurge: an important resource for weed biology research. Weed Sci 55:193–203

    Article  CAS  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Benech-Arnold RL, Ghersa CM, Sanchez RA et al (1988) The role of fluctuating temperatures in the germination and establishment of Sorghum halepense (L.) Pers.—regulation of germination under leaf canopies. Funct Ecol 2:311–318

    Article  Google Scholar 

  • Benech-Arnold RL, Sanchez RA, Forcella F et al (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Res 67:105–122

    Article  Google Scholar 

  • Bieniawska Z, Espinoza C, Schlereth A et al (2008) Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol 147:263–279

    Article  CAS  PubMed  Google Scholar 

  • Bossi F, Cordoba E, Dupré P et al (2009) The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J 59:359–374

    Article  CAS  PubMed  Google Scholar 

  • Bowes CG, Thomas AG (1978) Longevity of leafy spurge seeds in the soil following various control programs. J Range Manage 31:137–140

    Article  Google Scholar 

  • Brown EO, Porter RH (1942) The viability and germination of seeds of Convolvulus arvensis L. and other perennial weeds. Iowa Agric Exp Stn Res Bull 294:475–504

    Google Scholar 

  • Cadman CSC, Toorop PE, Hilhorst HWM et al (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    Article  CAS  PubMed  Google Scholar 

  • Carrera E, Holman T, Medhurst A et al (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J 53:214–224

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chao WS (2008) Real-time PCR as a tool to study weed biology. Weed Sci 56:290–296

    Article  CAS  Google Scholar 

  • Chen H, Zhang J, Neff MM et al (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci 105:4495–4500

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32:490–495

    Article  CAS  PubMed  Google Scholar 

  • Covington MF, Maloof JN, Straume M (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9:R130

    Article  PubMed  Google Scholar 

  • DiTomaso JM (2000) Invasive weeds in rangelands: species, impacts, and management. Weed Sci 48:255–265

    Article  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Dogramaci M, Horvath DP, Chao WS et al (2010) Extended low temperature impacts dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge. Plant Mol Biol (this issue)

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    CAS  PubMed  Google Scholar 

  • Finch-Savage WE, Cadman CSC, Toorop PE et al (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    CAS  PubMed  Google Scholar 

  • Foley ME (2008) Temperature and moisture status affect afterripening of leafy spurge (Euphorbia esula) seeds. Weed Sci 56:237–243

    Article  CAS  Google Scholar 

  • Foley ME, Chao WS (2008) Temperature and moisture status affect afterripening of leafy spurge (Euphorbia esula) seeds. Weed Sci 56:516–522

    Article  CAS  Google Scholar 

  • Geneve RL (2003) Impact of temperature on seed dormancy. Hortscience 38:336–341

    Google Scholar 

  • Ghersa CM, Benech-Arnold RL, Martinez-Ghersa MA (1992) The role of fluctuating temperatures in germination and establishment of Sorghum halepense—regulation of germination at increasing depths. Funct Ecol 6:460–468

    Article  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ (2008a) Molecular networks regulating Arabidopsis seed maturation, afterripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth MJ, Finch-Savage WE, Grappin P et al (2008b) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS et al (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC et al (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536

    Article  PubMed  Google Scholar 

  • Ibáñez C, Ramos A, Acebo P et al (2008) Overall alteration of circadian clock gene expression in the chestnut cold response. PLoS ONE 3:e3567

    Google Scholar 

  • Ishikawa M, Kiba T, Chua NH (2006) The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering. Plant J 46:736–746

    Article  CAS  PubMed  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R et al (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406

    Article  CAS  PubMed  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC et al (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    Article  CAS  PubMed  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Kurup S, Jones HD, Holdsworth MJ (2000) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21:143–155

    Article  CAS  PubMed  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR et al (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, North H, Frey A et al (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J 45:309–319

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Merrow M, Loros JJ, Dunlap JC (1998) How temperature changes reset a circadian oscillator. Science 281:825–829

    Article  CAS  PubMed  Google Scholar 

  • Lokko Y, Anderson JV, Rudd S et al (2007) Characterization of an 18, 166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the AB15 transcription factor in Arabidopsis. Proc Natl Acad Sci 98:4782–4787

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Ann Rev Plant Biol 56:165–185

    Article  CAS  Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Hall A (2009) A role for multiple circadian clock genes in response to signals that break seed dormancy in Arabidopsis. Plant Cell 21:1722–1732

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Yi L, Gilday AD et al (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Pérez-Solís E, Ibáñez C et al (2005) Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci 102:7037–7042

    Article  CAS  PubMed  Google Scholar 

  • Rodermel S, Park S (2003) Pathways of intracellular communication: tetrapyrroles and plastid-to-nucleus signaling. Bioessays 25:631–636

    Article  CAS  PubMed  Google Scholar 

  • Rook F, Hadingham SA, Li Y et al (2006) Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ 29:426–434

    Article  CAS  PubMed  Google Scholar 

  • Ruepp A, Zollner A, Maier D (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545

    Article  CAS  PubMed  Google Scholar 

  • Salomé PA, McClung CR (2005a) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17:791–803

    Article  PubMed  Google Scholar 

  • Salomé PA, McClung CR (2005b) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Environ 28:21–38

    Article  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S et al (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620

    Article  CAS  PubMed  Google Scholar 

  • Schultz TF, Kiyosue T, Yanovsky M et al (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13:2659–2670

    Article  CAS  PubMed  Google Scholar 

  • Selleck GW, Coupland RT, Frankton C (1962) Leafy spurge in Saskatchewan. Ecol Monogr 32:1–29

    Article  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  Google Scholar 

  • Teng S, Rognoni S, Bentsink L et al (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. Plant J 55:372–381

    Article  CAS  PubMed  Google Scholar 

  • Thompson K, Grime JP (1983) A comparative study of germination responses to diurnally-fluctuating temperatures. J Appl Ecol 20:141–156

    Article  Google Scholar 

  • Wu FQ, Xin Q, Cao Z et al (2009) The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis. Plant Physiol 150:1940–1954

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara M, Mitsui S, Hirano H et al (2004) Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis. J Exp Bot 55:2015–2027

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Rider SD Jr, Henderson JT (2008) The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. J Biol Chem 283:22637–22648

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Maier A, Lee JH et al (2008) Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 20:2307–2323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges Brant Bigger, Barry Hoffer, Wayne Sargent and Cheryl Kimberlin for their technical assistance; and Dr. Mark West for assistance with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Foley.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, M.E., Anderson, J.V., Chao, W.S. et al. Initial changes in the transcriptome of Euphorbia esula seeds induced to germinate with a combination of constant and diurnal alternating temperatures. Plant Mol Biol 73, 131–142 (2010). https://doi.org/10.1007/s11103-009-9569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9569-8

Keywords

Navigation