Skip to main content
Log in

The genes for gibberellin biosynthesis in wheat

  • Short Communication
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The gibberellin biosynthesis pathway is well defined in Arabidopsis and features seven key enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase, GA 3-oxidase, and GA 2-oxidase. The Arabidopsis genes were used to identify their counterparts in wheat and the TaCPS, TaKS, TaKO, and TaKAO genes were cloned from Chinese Spring wheat. In order to determine their chromosome locations, expression patterns and feedback regulations, three TaCPS genes, three TaKS genes, three TaKO genes, and three TaKAO genes were cloned from Chinese Spring wheat. They are mainly located on chromosomes 7A, 7B, 7D and 2A, 2B and 2D. The expression patterns of TaCPS, TaKS, TaKO, and TaKAO genes in wheat leaves, young spikes, peduncles, the third and forth internodes were investigated using quantitative PCR. The results showed that all the genes were constitutively expressed in wheat, but their relative expression levels varied in different tissues. They were mainly transcribed in stems, secondly in leaves and spikes, and the least in peduncles. Feedback regulation of the TaCPS, TaKS, TaKO, and TaKAO genes was not evident. These results indicate that all the genes and their homologs may play important roles in the developmental processes of wheat, but each of the homologs may function differently in different tissues or during different developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Appleford NE, Evans DJ, Lenton JR, Gaskin P, Croker SJ, Devos KM, Phillips AM, Hedden P (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582

    Article  PubMed  CAS  Google Scholar 

  • Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize Anl gene. Plant Cell 7:75–84

    Article  PubMed  CAS  Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    Article  PubMed  CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Smith JJ (2004) The pea gene LH encodes ent-kaurene oxidase. Plant Physiol 134:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB (2003) The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol 131:335–344

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Swain SM, Reid JB (2005) Regulation of the early GA biosynthesis pathway in peas. Planta 222:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Dubcovsky J, Dvorak J, Chinoy CN (1995) Structural evolution of wheat chromosomes 4A, 5A and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  Google Scholar 

  • Fleet CM, Yamaguchi S (2003) Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol 132:830–839

    Article  PubMed  CAS  Google Scholar 

  • Grennan AK (2006) Gibberellin metabolism enzymes in rice. Plant Physiol 141:524–526

    Article  PubMed  CAS  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Kamiya Y (1997) Gibberellin biosynthesis: enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48:431–460

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2001) Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul 20:319–331

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Poole A (1999) Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol 119:507–510

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Sheldon CC, Olive MR, Walker ARW, Zeevaart JAD, Peacock WJ, Dennis ES (1998) Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci U S A 95:9019–9024

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci U S A 98:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ. 347. Agric Exp Stn, Univ of Calif, Berkeley, CA

    Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayash M (2001) Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci U S A 98:8909–8914

    Article  PubMed  CAS  Google Scholar 

  • Jia Q, Zhang J (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genom 9:255–262

    Article  CAS  Google Scholar 

  • Khlestkina EK, Kumar U, Röder MS (2010) Ent-kaurenoic acid oxidase genes in wheat. Mol Breed 25:251–258

    Article  CAS  Google Scholar 

  • Lo S, Yang S, Chen K, Hsing Y, Zeevaart JAD, Chen L, Yu S (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618

    Article  PubMed  CAS  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    PubMed  CAS  Google Scholar 

  • Otomo K, Kenmoku H (2004) Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J 39:886–893

    Article  PubMed  CAS  Google Scholar 

  • Prisic S, Xu M (2004) Rice contains two disparate ent-Copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol 136:4228–4236

    Article  PubMed  CAS  Google Scholar 

  • Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillipsa AL (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436

    Article  PubMed  CAS  Google Scholar 

  • Salamini F (2003) Hormones and the Green Revolution. Science 302:71–72

    Article  PubMed  CAS  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee D, Zeevaart JAD, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Chang C, Krol E, Sun T (1997) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9–19

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “Green Revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99:9043–9048

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Ellis M, Robertson M, Ali S, Lenton JR, Chandler PM (2004) Isolation of gibberellin metabolic pathway genes from barley and comparative mapping in barley, wheat and rice. Theor Appl Genet 109:847–855

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase a of gibberellin biosynthesis. Plant Cell 6:1509–1518

    Article  PubMed  CAS  Google Scholar 

  • Toyomasu T (2008) Recent advances regarding diterpene cyclase genes in higher plants and fungi. Biosci Biotechnol Biochem 72:1168–1175

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Wilderman PR, Morrone D, Xu J, Roy A, Margis-Pinheiro M, Upadhyaya NM, Coates RM, Peters RJ (2007) Functional characterization of the rice kaurene synthase-like gene family. Phytochemistry 68:312–326

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S (2006) Gibberellin biosynthesis in Arabidopsis. Phytochemistry Rev 5:39–47

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Sun T, Kawaide H, Kamiya Y (1998) The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol 116:1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y, Sun T (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28:443–453

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Ni Z, Yao Y, Nie X, Sun Q (2007) Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet 8:40–52

    Article  PubMed  Google Scholar 

  • Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) Elongated uppermost internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (90717118 and 30521001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Zhang.

Additional information

Authors Yuanyuan Huang and Wenlong Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file 1

Nucleotide sequence alignments of three homologs of TaKS, TaKO, and TaKAO. a TaKS, b TaKO, c TaKAO (PDF 2,866 kb)

Additional file 2

Chromosomal localization of TaCPS, TaKS, TaKO, and TaKAO. a The three homologs of TaCPS are located on chromosomes 7A, 7B, and 7D; b The three homologs of TaKS are located on chromosomes 2A, 2B, and 2D; c The three homologs of TaKO are located on chromosomes 7A, 7B, and 7D; d The three homologs of TaKAO are located on chromosomes 4A, 7A, and 7D (PDF 1,299 kb)

Additional file 3

Feedback regulation of TaCPS, TaKS, TaKO, and TaKAO in wheat treated with PAC or GA3, with H2O treatment as a control. a TaCPS, b TaKS, c TaKO, d TaKAO (PDF 406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Yang, W., Pei, Z. et al. The genes for gibberellin biosynthesis in wheat. Funct Integr Genomics 12, 199–206 (2012). https://doi.org/10.1007/s10142-011-0243-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-011-0243-2

Keywords

Navigation