Skip to main content
Log in

Cytoplasmic male sterility-regulated novel microRNAs from maize

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

In higher plants, microRNA (miRNA) is involved in regulation of developmental processes, including sexual organ development. Seven novel miRNA families with one known miRNA were isolated by constructing a small RNA library from a mixture of anther from a cytoplasmic male sterile line and its maintainer. Two miRNAs are conserved in plant species. A total of 18 potential targets were identified for the eight miRNA families, including 15 proteins annotated with function and three unknown proteins. The known proteins include several proteins relevant to cell structure and stress response, transcription factors, and enzymes associated with metabolic and signaling pathways, playing important roles in microspore development. Quantitative real-time PCR assay revealed different expression patterns of the miRNAs between the cytoplasmic male sterile line and its maintainer. Each of the miRNAs tended to be down-regulated after the tetrad stage in a fertile line. However, most of the miRNAs in the cytoplasmic male sterile line were shown to be up-regulated from the tetrad to mononuclear stage, displaying special expression patterns differing from the ones in fertile line. We conclude that additional inactive miRNA pathways are essential during pollen development for a fertile line to ensure male fertility. Contrarily, miRNAs are up-regulated during the period from the tetrad to mononuclear stage, which contributes to pollen abortion for a cytoplasmic male sterile line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aach RO, Szmuness W, Mosley JW, Hollinger FB, Kahn RA, Stevens CE, Edwards VM, Werch J (1981) Serum alanine aminotransferase of donors in relation to the risk of non-A, non-B hepatitis in recipients: the transfusion-transmitted virus study. N Engl J Med 304:989–994

    Article  PubMed  CAS  Google Scholar 

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  PubMed  CAS  Google Scholar 

  • Alam S, Sandal PC (1969) Electrophoretic analyses of anther proteins from male-fertile and male-sterile sudangrass, Sorghum vulgare var. sudanense (Piper). Crop Sci 9:157–159

    Article  CAS  Google Scholar 

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  PubMed  CAS  Google Scholar 

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  PubMed  CAS  Google Scholar 

  • Araya A, Zabaleta E, Blanc V, Bégu D, Hernould M, Mouras A, Litvak S (1998) RNA editing in plant mitochondria, cytoplasmic male sterility and plant breeding. Electronic J Bio 1:31–39

    Article  Google Scholar 

  • Bahnson BJ, Anderson VE, Petsko GA (2002) Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry 41:2621–2629

    Article  PubMed  CAS  Google Scholar 

  • Banks JA (2008) MicroRNA, sex determination and floral meristem determinacy in maize. Genome Biol 9:204

    Article  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de PY (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20:2911–2917

    Article  PubMed  CAS  Google Scholar 

  • Büttner M (2007) The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett 581:2318–2324

    Article  PubMed  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B (2007) Banana (Musa spp.) as a model to study the meristem proteome: Acclimation to osmotic stress. Proteomics 7:92–105

    Article  PubMed  CAS  Google Scholar 

  • Cashman JR (1995) Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem Res Toxicol 8:166–181

    Article  PubMed  CAS  Google Scholar 

  • Chambers C, Shuai B (2009) Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol 9:87

    PubMed  Google Scholar 

  • Chase CD (2006) Genetically engineered cytoplasmic male sterility. Trends Plant Sci 11:7–9

    Article  PubMed  CAS  Google Scholar 

  • Chihara T, Luginbuhl D, Luo LQ (2007) Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neuro 10:828–837

    Article  CAS  Google Scholar 

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521

    Article  PubMed  CAS  Google Scholar 

  • Dashek WV, Erickson SS, Hayward DM, Lindbeck G, Mills RR (1979) Peroxidase in cytoplasm and cell wall of germinating lily pollen. Bot Gaz 140:261–265

    Article  CAS  Google Scholar 

  • Ding D, Zhang LF, Wang H, Liu ZJ, Zhang ZX, Zheng YL (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  Google Scholar 

  • Frankel N, Carrari F, Hasson E, Iusem ND (2006) Evolutionary history of the Asr gene family. Gene 378:74–83

    Article  PubMed  CAS  Google Scholar 

  • Groenendijk CFM, Sandbrink JM, Brederode JV, Damme JMMV (1997) Mitochondrial DNA variation within P-type cytoplasmic male sterility of Plantago lanceolata L. Heredity 78:75–83

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:154–169

    Article  Google Scholar 

  • Heuer S, Lörz H, Dresselhaus T (2000) The MADS box gene ZmMADS 2 is specifically expressed in maize pollen and during maize pollen tube growth. Sex Plant Reprod 13:21–27

    Article  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  Google Scholar 

  • Huang SB, Chou X (1994) Relationship between rice cytoplasmic male sterility and contents of GA1+4 and IAA. Acta Agric Bor-Sin 9:16–21

    CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–79

    Article  PubMed  CAS  Google Scholar 

  • Lan LF, Chen W, Lai Y, Suo JF, Kong ZS, Li C, Lu Y, Yj Z, Zhao XY, Zhang XS, Zhang YS, Han B, Cheng J, Xue YB (2004) Monitoring of gene expression profiles and isolation of candidate genes involved in pollination and fertilization in rice (Oryza sativa L.) with a 10 K cDNA microarray. Plant Mol Biol 54:471–487

    Article  PubMed  CAS  Google Scholar 

  • Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH (2002) Microtubule structure at 8 Angstrom resolution. Sructure 10:1317–1328

    Article  CAS  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li LG, Chiang VL (2005) Novel and mechanical stress-responsive micrornas in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  PubMed  CAS  Google Scholar 

  • Malik CP (1977) Enzymes in pollen development and pollen tube growth. Adv Pollen-Spore Res 2:30–43

    Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis CAMYB-like genes, MYB33 and MYB65 are MicroRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jone JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Parui S, Mondal AK, Mandal S (1998) Peroxidase isozyme profiles of immature and mature pollen of seven tropical plants from eastern India. Grana 37:228–232

    Article  Google Scholar 

  • Pina C, Pinto F, Feijó JA, Becher JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11:1737–1744

    Article  PubMed  CAS  Google Scholar 

  • Riccardi F, Gazeau P, Jacquemot MP, Vincent D, Zivy M (2004) Deciphering genetic variations of proteome responses to water deficit in maize leaves. Plant Physiol Biochem 42:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16:457–465

    Article  PubMed  CAS  Google Scholar 

  • Ruiz O, Daniell H (2005) Cytoplasmic male sterility engineered via the plastid genome. Plant Physiol 138:1232–1246

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Wuli B, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res 114:147–155

    Article  CAS  Google Scholar 

  • Song J, Hedgcoth C (1994) A chimeric gene (orf256) is expressed as protein only in cytoplasmic male-sterile lines of. Plant Mol Biol 26:535–539

    Article  PubMed  CAS  Google Scholar 

  • Sundström J, Carlsbecker A, Svensson ME, Svenson M, Johanson U, Theissen G, Engström P (1999) MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Dev Genet 25:253–266

    Article  PubMed  Google Scholar 

  • Sunkar R, Girke T, Zhu JK (2005) Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res 33:4443–4454

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, Watanabe R, Nishizawa NK, Gomi K, Shimada A, Kitano H (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  PubMed  CAS  Google Scholar 

  • Xia T, Liu JL (1994) Study on the relation between auxin, zeatin and cytoplasmic male sterility in maize (Zea mays L.). Acta Agron Sin 20:26–31

    Google Scholar 

  • Xie CT, Yang SJ, Zhang YN, Ye L, Tian HQ (2006a) ATPase distribution in fertile and sterile anther of a genic male sterile Chinese cabbage. J Mol Cell Biol 39:313–324

    Google Scholar 

  • Xie HY, Jiang PD, Wang XL, Zhang ZW, Zhu W, Wang XD (2006b) Changes of phytohormone centents in anther abortion of cytoplasmic male sterile cotton. Acta Agronomica Sinica 32:1094–1096

    CAS  Google Scholar 

  • Yang JH, Qi XH, Zhang MF, Yu JQ (2008) MADS-box genes are associated with cytoplasmic homeosis in cytoplasmic male-sterile stem mustard as partially mimicked by specifically inhibiting mtETC. Plant Growth Regul 56:191–201

    Article  CAS  Google Scholar 

  • Yao YQ, Zhang GS (2000) Comparative studies of ATPase activity of K-type cytoplasmic male sterile wheat line and its maintainer. Sci Agr Sinica 33:97–99

    CAS  Google Scholar 

  • Yao YY, Guo GG, Ni ZF, Sunkar R, Du JK, Zhu JK, Sun QX (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8:R96

    Article  PubMed  Google Scholar 

  • Ye XL, Edward Y, Xu SX, Liang CY (2003) Microtubule structure and male sterility in a gene–cytoplasmic male sterile line of rice, Zhen Shan 97A. Acta Bot Sin 45:183–192

    Google Scholar 

  • Zhang FD, Zheng YL, Cao ZG (2000) Construction of a bacterial artificial chromosome library of S-type CMS maize mitochondria. Chin Sci Bull 45:1692–1697

    Article  CAS  Google Scholar 

  • Zhang BH, Pan XP, Cox SB, Gobb GP, Anderson TA (2006a) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254

    Article  PubMed  CAS  Google Scholar 

  • Zhang JK, Zong XF, Yu GD, Li JN, Zhang W (2006b) Relationship between phytohormones and male sterility in thermo-photo-sensitive genic male sterile (TGMS). Euphytica 150:241–248

    Article  CAS  Google Scholar 

  • Zhang JY, Li Y, Shi GJ, Chen XF, Wang JJ, Hou XL (2009) Characterization of α-tubulin gene distinctively presented in a cytoplasmic male sterile and its maintainer line of non-heading Chinese cabbage. J Sci Food Agric 89:274–280

    Article  CAS  Google Scholar 

  • Zhao YD, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  PubMed  CAS  Google Scholar 

  • Zhou HW, Nussbaumer C, Chao Y, DeLong A (2004) Disparate roles for the regulatory a subunit isoforms in Arabidopsis protein Phosphatase 2A. Plant Cell 16:709–722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (grant no: 30900901) and the Project of Transgenic New Variety Cultivation (2008ZX08003-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtang Pan.

Additional information

Yaou Shen and Zhiming Zhang contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Predicted fold-back structures of new miRNAs from maize (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Zhang, Z., Lin, H. et al. Cytoplasmic male sterility-regulated novel microRNAs from maize. Funct Integr Genomics 11, 179–191 (2011). https://doi.org/10.1007/s10142-010-0202-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0202-3

Keywords

Navigation