Skip to main content
Log in

Genome-wide analysis for identification of salt-responsive genes in common wheat

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

To identify salt-responsive genes in wheat, global expression analysis of transcripts was carried out using oligo-DNA microarrays. Microarrays have been designed from approximately 32,000 unique wheat genes classified from a large number of expressed sequence tags (ESTs). Two-week-old seedlings of wheat were treated with 150 mM NaCl for 1, 6, and 24 h, and their roots and shoots were separately subjected to analyses. Consequently, 5,996 genes showed changes in expression of more than twofold and were classified into 12 groups according to correlations in expression patterns. These salt-responsive genes were assigned functions using the Gene Ontology (GO). Genes assigned to transcription factor, transcription-regulator activity, and DNA-binding functions were preferentially classified into early response groups. On the other hand, those assigned transferase and transporter activity were classified into late response groups. These data suggest that multiple signal transduction pathways in response to salinity exist in wheat. Transcription factors (TFs) which have been reported as participants in salt-tolerant pathway changed their expression levels in response to salt treatment. Among them, only a few TFs show high sequence homologies to genes in rice. These investigations suggest that salt-responsive genes identified by this study are candidates for salt-stress tolerance uniquely in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berardini T, Mundodi S, Reiser R, Huala E, Garcia-Hernandez M, Zhang P, Mueller L, Yoon J, Doyle A, Lander G, Moseyko N, Yoo D, Xu I, Zoeckler B, Montoya M, Miller N, Weems D, Rhee S (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135:1–11

    Article  Google Scholar 

  • Chao D, Luo Y, Shi M, Luo D, Lin H (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Research 15:796–810

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Lazo G, You F, Crossman C, Hummel D, Lui N, Laudencia-Chingcuanco D, Anderson JA, Close T, Dubcovsky J, Gill B, Gill K, Gustafson J, Kianian S, Lapitan N, Nguyen H, Sorrells M, McGuire P, Qualset C, Anderson O (2006) Use of a large-scale Triticeae expressed sequence tag resource to reveal gene expression profiles in hexaploid wheat (Triticum aestivum L.). Genome 49:531–544

    Article  PubMed  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl J, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  PubMed  CAS  Google Scholar 

  • Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able J (2006) Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics 7:267

    Article  PubMed  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of a R1R2R3 MYB Gene, OsMYB3R-2, Increases Tolerance to Freezing, Drought, and Salt Stress in Transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Devos K, Ma J, Pontaroli A, Pratt L, Bennetzen J (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci USA 102:19243–19248

    Article  PubMed  CAS  Google Scholar 

  • Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Finn R, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer E, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acid Research 34:D247–251

    Article  CAS  Google Scholar 

  • Flowers T, Koyama M, Flowers S, Sudhakar C, Singh K, Yeo A (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51:99–106

    Article  PubMed  CAS  Google Scholar 

  • Flowers T (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice. Plant Cell Physiol 45:146–159

    Article  PubMed  CAS  Google Scholar 

  • Gill B, Appels R, Botha-Oberholster A, Buell C, Bennetzen J, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie W, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168:1087–1096

    Article  PubMed  Google Scholar 

  • Golkari S, Gilbert J, Prashar S, Procunier JD (2007) Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ-specific and differentially expressed genes. Plant Biotechnol J 5:38–49

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 5:192–206

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PL, Brinch-Pedersen H, Holm P (2005) A microarray-based comparative analysis of gene expression profiles during grain development in transgenic and wild type wheat. Transgenic Res 14:887–905

    Article  PubMed  CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7:149

    Article  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map based sequence of rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    Article  PubMed  Google Scholar 

  • Kader M, Seidel T, Golldack D, Lindberg S (2006) Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J Exp Bot 15:4257–4268

    Article  Google Scholar 

  • Karlin S, Altschul S (1993) Applications and statistics for multiple high-scoring segments in molecular sequences. Proc Natl Acad Sci USA 90:5873–5877

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  PubMed  CAS  Google Scholar 

  • Kawaura K, Mochida K, Yamazaki Y, Ogihara Y (2006) Transcriptome analysis of salinity stress responses in common wheat using a 22 k oligo-DNA microarray. Funct Integr Genomics 6:132–142

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li C, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A, Rice Full-Length cDNA Project TeamFoundation of Agrobiological International Science Genome Sequencing and Analysis Group RIKEN (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Brief Funct Genomic Proteomic 4:343–354

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Ahn J, Cha Y, Yun D, Lee M, Ko J, Lee K, Eun M (2006) Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol Cells 21:192–196

    PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Kawaura K, Shimosaka E, Kawakami N, Shin-i T, Kohara Y, Yamazaki Y, Ogihara Y (2006) Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol Genet Genomes 276:304–312

    Article  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Pysiologia Plantarum 126:62–71

    Article  CAS  Google Scholar 

  • Ogihara Y, Mochida K, Nemoto Y, Murai K, Yamazaki Y, Shin-i T, Kohara Y (2003) Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J 33:1001–1011

    Article  PubMed  Google Scholar 

  • Oh S, Song S, Kim Y, Jang H, Kim S, Kim M, Kim Y, Nahm B, Kim J (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Research 35:D883–D887

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito R, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  PubMed  CAS  Google Scholar 

  • Qu LJ, Zhu YX (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Current Opinion in Plant Biology 9:544–549

    Article  PubMed  CAS  Google Scholar 

  • Quarrie S, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D, Farmer P, Saker L, Clarkson D, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M, Hollington P, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Rabbani M, Maruyama K, Abe H, Khan M, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet 37:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+ -dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Satou M, Sakurai T, Akiyama K, Iida K, Ishida J, Nakajima M, Enju A, Narusaka M, Fujita M, Oono Y, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2004) RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J Exp Bot 55:213–223

    Article  PubMed  CAS  Google Scholar 

  • Shukla R, Raha S, Tripathi V, Chattopadhyay D (2006) Expression of CAP2, and APETALA2-family transcription factor fron chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol 142:113–123

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 480:796–815

    Article  Google Scholar 

  • The Gene Ontology Consortium (2000) Gene Ontology: tool for the unification of biology. Nature Genet 25:25–29

    Article  Google Scholar 

  • Ueda A, Kathiresan A, Bennett J, Takabe T (2006) Comparative transcriptome analyses of barley and rice under salt stress. Theor Appl Genet 112:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail A, Zeng L, Wanamaker S, Mandal J, Xu J, Cui X, Close T (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail A, Condamine P, Close T (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during Cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research on Priority Areas “Comparative Genomics” and the National Bioresource Project of the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), GSM198948, GSM198949, GSM198952, GSM198955, GSM198961, GSM198962, GSM198969, GSM198970, GSM198971, GSM198972, GSM-198973, GSM199012, GSM199013, GSM199014, GSM199015, GSM199016, GSM199017, GSM199018, GSM199019, GSM199020, GSM199021, GSM199022 and GSM199023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunari Ogihara.

Electronic supplementary material

Below is the link to the electronic supplementary material

Table S1

Experimental design for microarray hybridizations. (doc 35 KB)

Table S2

Primer pairs using for qRT-PCR in wheat. (doc 30 KB)

Fig. S1

Validation of microarray data by qPCR. Vertical axis indicates log-transformed ratio of expression level. Solid black bar shows log-transformed ratio from qPCR, and gray bar shows log-transformed ratio from microarrays. Probe IDs and definitions are as follows: a w15334 dehydrin, b 23lib_15343 transcription factor AP2D23-like, c 23lib_11009 RAV1-like, d w9701 NAC domain containing protein, e w15821 alcohol dehydrogenase, f w14201 thiamine biosynthesis protein, g w13500 fructokinase, h w12804 chalcone synthase. Primer pairs using for qPCR are listed in Supplemental Table 2. (doc 240 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawaura, K., Mochida, K. & Ogihara, Y. Genome-wide analysis for identification of salt-responsive genes in common wheat. Funct Integr Genomics 8, 277–286 (2008). https://doi.org/10.1007/s10142-008-0076-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0076-9

Keywords

Navigation