Skip to main content

Advertisement

Log in

Multidetector CT and three-dimensional CT angiography of upper extremity arterial injury

  • Review Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript

Abstract

Successful management of upper extremity arterial injury requires fast and accurate diagnosis. The rate of limb preservation depends on the location, severity, and time of ischemia. Indications for diagnostic imaging depend on the mechanism and type of injury, clinical signs, cardiovascular stability, and clinical suspicion. Because of ease of access, speed, and high accuracy for this diagnosis, multidetector computed tomographic (MDCT) angiography is often used as the first line imaging modality. MDCT systems with 64 slice configuration and more afford high temporal and spatial high-resolution, isotropic data acquisition and integration with whole-body trauma MDCT protocols. The use of individual injection timing protocols ensures high diagnostic image quality. Several strategies are available to reduce radiation exposure. Direct MDCT angiography findings of arterial injuries include active extravasation, luminal narrowing, lack of luminal contrast opacification, filling defect, arteriovenous fistula, and pseudoaneurysm. Important descriptors are location and length of defect, degree of luminal narrowing, and presence of distal arterial supply reconstitution. Proximal arterial injuries include the subclavian, axillary, and brachial arteries. Distal arterial injuries include the ulnar and radial arteries, as well as the palmar arterial arches. Concomitant venous injury, musculoskeletal injury, and nerve damage are common. In this exhibit, we outline the role of MDCT angiography in the diagnosis and management of upper extremity arterial injury, discuss strategies for MDCT angiography acquisition and concepts of data visualization, and illustrate various types of injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bogdan MA, Klein MB, Rubin GD, McAdams TR, Chang J (2004) CT angiography in complex upper extremity reconstruction. J Hand Surg (Br) 29:465–469

    Article  CAS  Google Scholar 

  2. Fields CE, Latifi R, Ivatury RR (2002) Brachial and forearm vessel injuries. Surg Clin North Am 82:105–114

    Article  PubMed  Google Scholar 

  3. Hunt CA, Kingsley JR (2000) Vascular injuries of the upper extremity. South Med J 93:466–468

    Article  CAS  PubMed  Google Scholar 

  4. McCroskey BL, Moore EE, Pearce WH, Moore FA, Cota R, Sawyer JD (1988) Traumatic injuries of the brachial artery. Am J Surg 156:553–555

    Article  CAS  PubMed  Google Scholar 

  5. Franz RW, Goodwin RB, Hartman JF, Wright ML (2009) Management of upper extremity arterial injuries at an urban level I trauma center. Ann Vasc Surg 23:8–16

    Article  PubMed  Google Scholar 

  6. Franz RW, Skytta CK, Shah KJ, Hartman JF, Wright ML (2012) A five-year review of management of upper-extremity arterial injuries at an urban level I trauma center. Ann Vasc Surg 26:655–664

    Article  PubMed  Google Scholar 

  7. Novelline RA, Rhea JT, Rao PM, Stuk JL (1999) Helical CT in emergency radiology. Radiology 213:321–339

    Article  CAS  PubMed  Google Scholar 

  8. Rivas LA, Fishman JE, Munera F, Bajayo DE (2003) Multislice CT in thoracic trauma. Radiol Clin North Am 41:599–616

    Article  PubMed  Google Scholar 

  9. Geijer M, El-Khoury GY (2006) MDCT in the evaluation of skeletal trauma: principles, protocols, and clinical applications. Emerg Radiol 13:7–18

    Article  PubMed  Google Scholar 

  10. Kalra N, Khandelwal N, Gupta P et al (2008) MDCT arteriographic spectrum in acute blunt peripheral trauma—a pictorial review. Emerg Radiol 15:91–97

    Article  PubMed  Google Scholar 

  11. Murakami AM, Anderson SW, Soto JA, Kertesz JL, Ozonoff A, Rhea JT (2009) Active extravasation of the abdomen and pelvis in trauma using 64MDCT. Emerg Radiol 16:375–382

    Article  PubMed  Google Scholar 

  12. Uyeda J, Anderson SW, Kertesz J, Soto JA (2010) Pelvic CT angiography: application to blunt trauma using 64MDCT. Emerg Radiol 17:131–137

    Article  PubMed  Google Scholar 

  13. Schroeder JW, Baskaran V, Aygun N (2010) Imaging of traumatic arterial injuries in the neck with an emphasis on CTA. Emerg Radiol 17:109–122

    Article  PubMed  Google Scholar 

  14. Jens S, Kerstens MK, Legemate DA, Reekers JA, Bipat S, Koelemay MJ (2013) Diagnostic performance of computed tomography angiography in peripheral arterial injury due to trauma: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg 46(3):329–337

    Article  CAS  PubMed  Google Scholar 

  15. AbuRahma AF, Robinson PA, Boland JP et al (1993) Complications of arteriography in a recent series of 707 cases: factors affecting outcome. Ann Vasc Surg 7:122–129

    Article  CAS  PubMed  Google Scholar 

  16. Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22:949–962

    Article  PubMed  Google Scholar 

  17. Anderson SW, Lucey BC, Rhea JT, Soto JA (2007) 64 MDCT in multiple trauma patients: imaging manifestations and clinical implications of active extravasation. Emerg Radiol 14:151–159

    Article  PubMed  Google Scholar 

  18. Anderson SW, Foster BR, Soto JA (2008) Upper extremity CT angiography in penetrating trauma: use of 64-section multidetector CT. Radiology 249:1064–1073

    Article  PubMed  Google Scholar 

  19. Tan TW, Joglar FL, Hamburg NM et al (2011) Limb outcome and mortality in lower and upper extremity arterial injury: a comparison using the National Trauma Data Bank. Vasc Endovascular Surg 45:592–597

    Article  PubMed  Google Scholar 

  20. Rose SC, Moore EE (1988) Trauma angiography of the extremity: the impact of injury mechanism on triage decisions. Cardiovasc Intervent Radiol 11:136–139

    Article  CAS  PubMed  Google Scholar 

  21. Rozycki GS, Tremblay LN, Feliciano DV, McClelland WB (2003) Blunt vascular trauma in the extremity: diagnosis, management, and outcome. J Trauma 55:814–824

    Article  PubMed  Google Scholar 

  22. Wagner WH, Yellin AE, Weaver FA, Stain SC, Siegel AE (1994) Acute treatment of penetrating popliteal artery trauma: the importance of soft tissue injury. Ann Vasc Surg 8:557–565

    Article  CAS  PubMed  Google Scholar 

  23. Abouezzi Z, Nassoura Z, Ivatury RR, Porter JM, Stahl WM (1998) A critical reappraisal of indications for fasciotomy after extremity vascular trauma. Arch Surg 133:547–551

    Article  CAS  PubMed  Google Scholar 

  24. Cikrit DF, Dalsing MC, Bryant BJ, Lalka SG, Sawchuk AP, Schulz JE (1990) An experience with upper-extremity vascular trauma. Am J Surg 160:229–233

    Article  CAS  PubMed  Google Scholar 

  25. Diamond S, Gaspard D, Katz S (2003) Vascular injuries to the extremities in a suburban trauma center. Am Surg 69:848–851

    PubMed  Google Scholar 

  26. Myers SI, Harward TR, Maher DP, Melissinos EG, Lowry PA (1990) Complex upper extremity vascular trauma in an urban population. J Vasc Surg 12:305–309

    Article  CAS  PubMed  Google Scholar 

  27. Pillai L, Luchette FA, Romano KS, Ricotta JJ (1997) Upper-extremity arterial injury. Am Surg 63:224–227

    CAS  PubMed  Google Scholar 

  28. Frykberg ER (1995) Advances in the diagnosis and treatment of extremity vascular trauma. Surg Clin North Am 75:207–223

    CAS  PubMed  Google Scholar 

  29. Frykberg ER, Dennis JW, Bishop K, Laneve L, Alexander RH (1991) The reliability of physical examination in the evaluation of penetrating extremity trauma for vascular injury: results at one year. J Trauma 31:502–511

    Article  CAS  PubMed  Google Scholar 

  30. Feliciano DV (2010) Management of peripheral arterial injury. Curr Opin Crit Care 16:602–608

    Article  PubMed  Google Scholar 

  31. Korn A, Fenchel M, Bender B et al (2013) High-pitch dual-source CT angiography of supra-aortic arteries: assessment of image quality and radiation dose. Neuroradiology 55:423–430

    Article  CAS  PubMed  Google Scholar 

  32. Foster BR, Anderson SW, Uyeda JW, Brooks JG, Soto JA (2011) Integration of 64-detector lower extremity CT angiography into whole-body trauma imaging: feasibility and early experience. Radiology 261:787–795

    Article  PubMed  Google Scholar 

  33. Dreizin D, Munera F (2012) Blunt polytrauma: evaluation with 64-section whole-body CT angiography. Radiographics 32:609–631

    Article  PubMed  Google Scholar 

  34. Coursey CA, Nelson RC, Boll DT et al (2010) Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics 30:1037–1055

    Article  PubMed  Google Scholar 

  35. Vlahos I, Chung R, Nair A, Morgan R (2012) Dual-energy CT: vascular applications. AJR Am J Roentgenol 199:S87–S97

    Article  PubMed  Google Scholar 

  36. Namasivayam S, Kalra MK, Torres WE, Small WC (2006) Adverse reactions to intravenous iodinated contrast media: a primer for radiologists. Emerg Radiol 12:210–215

    Article  PubMed  Google Scholar 

  37. Tamm EP, Rong XJ, Cody DD, Ernst RD, Fitzgerald NE, Kundra V (2011) Quality initiatives: CT radiation dose reduction: how to implement change without sacrificing diagnostic quality. Radiographics 31:1823–1832

    Article  PubMed  Google Scholar 

  38. Lee MJ, Kim S, Lee SA et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27:791–803

    Article  PubMed  Google Scholar 

  39. Gunn ML, Kohr JR (2010) State of the art: technologies for computed tomography dose reduction. Emerg Radiol 17:209–218

    Article  PubMed  Google Scholar 

  40. Kalra MK, Rizzo SM, Novelline RA (2005) Reducing radiation dose in emergency computed tomography with automatic exposure control techniques. Emerg Radiol 11:267–274

    Article  PubMed  Google Scholar 

  41. Kalra MK, Rizzo SM, Novelline RA (2005) Technologic innovations in computer tomography dose reduction: implications in emergency settings. Emerg Radiol 11:127–128

    Article  PubMed  Google Scholar 

  42. Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108

    Article  PubMed  Google Scholar 

  43. Pontana F, Pagniez J, Duhamel A et al (2013) Reduced-dose low-voltage chest CT angiography with Sinogram-affirmed iterative reconstruction versus standard-dose filtered back projection. Radiology 267:609–618

    Article  PubMed  Google Scholar 

  44. Huda W (2009) What ER radiologists need to know about radiation risks. Emerg Radiol 16:335–341

    Article  PubMed  Google Scholar 

  45. Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR (2012) Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Invest Radiol 47:406–414

    Article  PubMed  Google Scholar 

  46. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK (1999) Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 19:745–764

    Article  CAS  PubMed  Google Scholar 

  47. Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT (2006) Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics 26:905–922

    Article  PubMed  Google Scholar 

  48. Pretorius ES, Fishman EK (1999) Volume-rendered three-dimensional spiral CT: musculoskeletal applications. Radiographics 19:1143–1160

    Article  CAS  PubMed  Google Scholar 

  49. Inaba K, Potzman J, Munera F et al (2006) Multi-slice CT angiography for arterial evaluation in the injured lower extremity. J Trauma 60:502–506

    Article  PubMed  Google Scholar 

  50. Addis KA, Hopper KD, Iyriboz TA et al (2001) CT angiography: in vitro comparison of five reconstruction methods. AJR Am J Roentgenol 177:1171–1176

    Article  CAS  PubMed  Google Scholar 

  51. Uglietta JP, Kadir S (1989) Arteriographic study of variant arterial anatomy of the upper extremities. Cardiovasc Intervent Radiol 12:145–148

    Article  CAS  PubMed  Google Scholar 

  52. Gellman H, Botte MJ, Shankwiler J, Gelberman RH (2001) Arterial patterns of the deep and superficial palmar arches. Clin Orthop Relat Res 41–46

  53. Tsuruo Y, Ueyama T, Ito T et al (2006) Persistent median artery in the hand: a report with a brief review of the literature. Anat Sci Int 81:242–252

    Article  PubMed  Google Scholar 

  54. Pieroni S, Foster BR, Anderson SW, Kertesz JL, Rhea JT, Soto JA (2009) Use of 64-row multidetector CT angiography in blunt and penetrating trauma of the upper and lower extremities. Radiographics 29:863–876

    Article  PubMed  Google Scholar 

  55. Fritz J, Efron DT, Fishman EK (2013) State-of-the-art 3DCT angiography assessment of lower extremity trauma: typical findings, pearls, and pitfalls. Emerg Radiol 20:175–184

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Fritz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritz, J., Efron, D.T. & Fishman, E.K. Multidetector CT and three-dimensional CT angiography of upper extremity arterial injury. Emerg Radiol 22, 269–282 (2015). https://doi.org/10.1007/s10140-014-1288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-014-1288-z

Keywords

Navigation