Skip to main content
Log in

State of the art: technologies for computed tomography dose reduction

  • Review Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript

Abstract

The utilization of computed tomography (CT) in the emergency department has grown rapidly in the last decade, driven by strong evidence supporting its effectiveness in the rapid diagnosis of an increasing range of diseases. Concerns have been raised about potential cancer induction caused by the increased use of CT and the high radiation dose associated with some multidetector row CT examinations. Recent research into protocol design and new CT scanner technologies enable high-quality examinations to be performed with a significant reduction in radiation dose. These advances are discussed, with emphasis on their application to emergency radiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Guthrie C (2008) How dangerous are CT scans? Time Magazine. Time Inc., New York, June 27

  2. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  PubMed  Google Scholar 

  3. Mettler FA Jr, Thomadsen BR, Bhargavan M et al (2008) Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys 95:502–507

    Article  CAS  PubMed  Google Scholar 

  4. Broder J, Warshauer DM (2006) Increasing utilization of computed tomography in the adult emergency department, 2000–2005. Emerg Radiol 13:25–30

    Article  PubMed  Google Scholar 

  5. Gottlieb RH, La TC, Erturk EN et al (2002) CT in detecting urinary tract calculi: influence on patient imaging and clinical outcomes. Radiology 225:441–449

    Article  PubMed  Google Scholar 

  6. Ost D, Khanna D, Shah R et al (2004) Impact of spiral computed tomography on the diagnosis of pulmonary embolism in a community hospital setting. Respiration 71:450–457

    Article  PubMed  Google Scholar 

  7. Amis ES Jr, Butler PF, Applegate KE et al (2007) American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol 4:272–284

    Article  PubMed  Google Scholar 

  8. Wells PS (2007) Integrated strategies for the diagnosis of venous thromboembolism. J Thromb Haemost 5(Suppl 1):41–50

    Article  CAS  PubMed  Google Scholar 

  9. Goske MJ, Applegate KE, Boylan J et al (2008) Image Gently(SM): a national education and communication campaign in radiology using the science of social marketing. J Am Coll Radiol 5:1200–1205

    Article  PubMed  Google Scholar 

  10. Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  PubMed  Google Scholar 

  11. Kanal KM, Stewart BK, Kolokythas O, Shuman WP (2007) Impact of operator-selected image noise index and reconstruction slice thickness on patient radiation dose in 64-MDCT. AJR Am J Roentgenol 189:219–225

    Article  PubMed  Google Scholar 

  12. Angel E, Yaghmai N, Jude CM et al (2009) Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT. Phys Med Biol 54:497–512

    Google Scholar 

  13. Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17:2028–2037

    Article  PubMed  Google Scholar 

  14. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  15. Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437

    Article  PubMed  Google Scholar 

  16. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  17. Hopper KD, King SH, Lobell ME, TenHave TR, Weaver JS (1997) The breast: in-plane X-ray protection during diagnostic thoracic CT-shielding with bismuth radioprotective garments. Radiology 205:853–858

    CAS  PubMed  Google Scholar 

  18. Fricke BL, Donnelly LF, Frush DP et al (2003) In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. AJR Am J Roentgenol 180:407–411

    PubMed  Google Scholar 

  19. Leswick DA, Hunt MM, Webster ST, Fladeland DA (2008) Thyroid shields versus z-axis automatic tube current modulation for dose reduction at neck CT. Radiology 249:572–580

    Article  PubMed  Google Scholar 

  20. Vollmar SV, Kalender WA (2008) Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol 18:1674–1682

    Article  PubMed  Google Scholar 

  21. Gunn ML, Kanal KM, Kolokythas O, Anzai Y (2009) Radiation dose reduction using bismuth shielding on MDCT of the cervical spine. Does bismuth shielding with and without a cervical collar reduce dose? J Comput Assist Tomogr (in press)

  22. Hohl C, Wildberger JE, Suss C et al (2006) Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol 47:562–567

    Article  CAS  PubMed  Google Scholar 

  23. van der Molen AJ, Geleijns J (2007) Overranging in multisection CT: quantification and relative contribution to dose-comparison of four 16-section CT scanners. Radiology 242:208–216

    Article  PubMed  Google Scholar 

  24. Tzedakis A, Perisinakis K, Raissaki M, Damilakis J (2006) The effect of z overscanning on radiation burden of pediatric patients undergoing head CT with multidetector scanners: a Monte Carlo study. Med Phys 33:2472–2478

    Article  PubMed  Google Scholar 

  25. Deak PD, Langner O, Lell M, Kalender WA (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147

    Article  PubMed  Google Scholar 

  26. Tack D, Gevenois PA (2007) Radiation dose from adult and pediatric multidetector computed tomography. Springer, New York, p 276

    Book  Google Scholar 

  27. Matsuoka S, Hunsaker AR, Gill RR et al (2009) Vascular enhancement and image quality of MDCT pulmonary angiography in 400 cases: comparison of standard and low kilovoltage settings. AJR Am J Roentgenol 192:1651–1656

    Article  PubMed  Google Scholar 

  28. Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397

    Article  PubMed  Google Scholar 

  29. Schindera ST, Nelson RC, Yoshizumi T et al (2009) Effect of automatic tube current modulation on radiation dose and image quality for low tube voltage multidetector row CT angiography: phantom study. Acad Radiol 16:997–1002

    Article  PubMed  Google Scholar 

  30. Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252(2):433–440

    Google Scholar 

  31. Chandarana H, Godoy MC, Vlahos I et al (2008) Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms—initial observations. Radiology 249:692–700

    Article  PubMed  Google Scholar 

  32. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  33. Anderson SW, Varghese JC, Lucey BC, Burke PA, Hirsch EF, Soto JA (2007) Blunt splenic trauma: delayed-phase CT for differentiation of active hemorrhage from contained vascular injury in patients. Radiology 243:88–95

    Article  PubMed  Google Scholar 

  34. Huber-Wagner S, Lefering R, Qvick LM et al (2009) Effect of whole-body CT during trauma resuscitation on survival: a retrospective, multicentre study. Lancet 373:1455–1461

    Article  PubMed  Google Scholar 

  35. Ptak T, Rhea JT, Novelline RA (2003) Radiation dose is reduced with a single-pass whole-body multi-detector row CT trauma protocol compared with a conventional segmented method: initial experience. Radiology 229:902–905

    Article  PubMed  Google Scholar 

  36. Martinsen AC, Saether HK, Olsen DR, Skaane P, Olerud HM (2008) Reduction in dose from CT examinations of liver lesions with a new postprocessing filter: a ROC phantom study. Acta Radiol 49:303–309

    Article  PubMed  Google Scholar 

  37. Kalra MK, Maher MM, Blake MA et al (2004) Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters. Radiology 232:791–797

    Article  PubMed  Google Scholar 

  38. Xu J, Tsui BM (2009) Electronic noise modeling in statistical iterative reconstruction. IEEE Trans Image Process 18:1228–1238

    Article  PubMed  Google Scholar 

  39. Niemann T, Kollmann T, Bongartz G (2008) Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. AJR Am J Roentgenol 191:396–401

    Article  PubMed  Google Scholar 

  40. Platon A, Jlassi H, Rutschmann OT et al (2009) Evaluation of a low-dose CT protocol with oral contrast for assessment of acute appendicitis. Eur Radiol 19:446–454

    Article  PubMed  Google Scholar 

  41. Wijetunga R, Tan BS, Rouse JC, Bigg-Wither GW, Doust BD (2001) Diagnostic accuracy of focused appendiceal CT in clinically equivocal cases of acute appendicitis. Radiology 221:747–753

    Article  CAS  PubMed  Google Scholar 

  42. Kallen JA, Coughlin BF, O'Loughlin MT, Stein B (2009) Reduced Z-axis coverage multidetector CT angiography for suspected acute pulmonary embolism could decrease dose and maintain diagnostic accuracy. Emerg Radiol 17:31–35

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin L. D. Gunn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunn, M.L.D., Kohr, J.R. State of the art: technologies for computed tomography dose reduction. Emerg Radiol 17, 209–218 (2010). https://doi.org/10.1007/s10140-009-0850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-009-0850-6

Keywords

Navigation