Skip to main content

Advertisement

Log in

Identification of Genes Potentially Related to Biomineralization and Immunity by Transcriptome Analysis of Pearl Sac in Pearl Oyster Pinctada martensii

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Pearl oyster Pinctada martensii is cultured for production of pearl in China. It needs to implant a mantle graft cut from a donor oyster and a seed nucleus into the gonad of the host oyster to produce a pearl. Pearl sac surrounding the nucleus is formed by the proliferation of the implanted mantle graft from the outer mantle epithelial cells in the host oyster. The pearl sac is responsible for production of a cultured pearl. A comprehensive transcriptome analysis on pearl sac will help to understand the mechanism on pearl formation and immune response of host oyster after nucleus implantation. In the present study, 39,400,004 reads were produced from the pearl sac using RNA-sequence technology and then assembled into 102,762 unigenes. More than 22.4% of these unigenes were possibly involved in approximately 219 known signaling pathways. A total of 37,188 unigenes were annotated based on sequences similarities with known proteins. Fifty-one biomineralization-related unigenes and 268 immune-related unigenes were not previously detected in P. martensii. The un-annotated unigenes may be some genes specifically existed in P. martensii. These annotated or un-annotated unigenes in the present studies were valuable for the future investigation on molecular mechanism of pearl formation and immune response of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barclay A (2003) Membrane proteins with immunoglobulin-like domains Lubomirskia baikalensis a master superfamily of interaction molecules. Semin Immunol 15:215–223

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch MI, Lipman DJ et al (2007) GenBank. Nucleic Acids Res 35:D25–D30

    Article  Google Scholar 

  • Blank S, Arnoldi M, Khoshnavaz S et al (2003) The nacre protein perlucin nucleates growth of calcium carbonate crystals. J Microsc 212:280–291

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Qian GY (2009) Studies on the formation of pearl sac in vitro of epithelial cells and tissue from mantle. J Hydroecol 2:74–77

    Google Scholar 

  • Chen JH, Shu X, Yu ZN (2010) F-type lectin involved in defense against bacterial infection in the pearl oyster (Pinctada martensii). Fish Shellfish Immunol 30:750–754

    Article  PubMed  Google Scholar 

  • Choi YK, Jo PG, Choi CY (2008) Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas. Comp Biochem Physiol C 147:86–92

    Google Scholar 

  • Chu SL, Weng FC, Hsiao CD et al (2006) Profile analysis of expressed sequence tags derived from the ovary of tilapia, Oreochromis mossambicus. Aquaculture 251:537–547

    Article  CAS  Google Scholar 

  • Crossin K, Krushel LA (2000) Cellular signaling by neural cell adhesion molecules of the immunoglobulin superfamily. Dev Dyn 218:260–279

    Article  PubMed  CAS  Google Scholar 

  • Didier Z, Aurélie M, Guillaume E et al (2009) Specific expression of BMP2/4 ortholog in biomineralizing tissues of corals and action on mouse BMP receptor. Mar Biotechnol 11:260–269

    Article  Google Scholar 

  • Dong B, Xiang JH (2007) Discovery of genes involved in defense/immunity functions in a haemocytes cDNA library from Fenneropenaeus chinensis by ESTs annotation. Aquaculture 272:208–215

    Article  CAS  Google Scholar 

  • Du X, Jiao Y, Deng YW et al (2010) Ultrastructure of the pearl sac cells of pearl oyster Pinctada martensii. Acta Oceanol Sin 32:160–164

    Google Scholar 

  • Forbes EG, Cronshaw AD, MacBeath J et al (1994) Tyrosine-rich acidic matrix protein (TRAMP) is a tyrosine-sulphated and widely distributed protein of the extracellular matrix. FEBS Lett 351:433–436

    Article  PubMed  CAS  Google Scholar 

  • Fu DK, Chen JH, Zhang Y et al (2011) Cloning and expression of a heat shock protein (HSP) 90 gene in the haemocytes of Crassostrea hongkongensis under osmotic stress and bacterial challenge. Fish Shellfish Immunol 31:118–125

    Article  PubMed  CAS  Google Scholar 

  • Gao Q, Song L, Ni D et al (2007) cDNA cloning and mRNA expression of heat shock protein 90 gene in the haemocytes of Zhikong scallop Chlamys farreri. Comp Biochem Physiol B 147:704–715

    Article  PubMed  Google Scholar 

  • Gao Q, Zhao JM, Song LS et al (2008) Molecular cloning, characterization and expression of heat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradians. Fish Shellfish Immunol 24:379–385

    Article  PubMed  CAS  Google Scholar 

  • Goodson MS, Kojadinovic M, Troll JV et al (2005) Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopesVibrio fischeri light organ symbiosis. Appl Environ Microbiol 71:6934–6946

    Article  PubMed  CAS  Google Scholar 

  • Guan YY, Huang LM, He MX (2010) Construction of cDNA subtractive library from pearl oyster (Pinctada fucata Gould) with red color shell by SSH. Chin J Oceanol Limnol 29:616–622

    Article  Google Scholar 

  • Hegedus Z, Zakrzewska A, Agoston VC et al (2009) Deep sequencing of zebrafish transcriptome response to mycobacterium infection. Mol Immunol 45:2018–2930

    Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Karlheinz M, Weiss IM, Sabine AA et al (2000) The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Eur J Biochem 267:5257–5264

    Article  Google Scholar 

  • Kathryn VA, Gerd J, Christiane N-V (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789

    Article  Google Scholar 

  • Kinoshita S, Wang N, Inoue H et al (2011) Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster. PLoS One 6:1–19

    Google Scholar 

  • Leulier F, Lemaitre B (2008) Toll-like receptors-taking an evolutionary approach. Nat Rev Genet 9:165–178

    Article  PubMed  CAS  Google Scholar 

  • Li RQ, Zhu HM, Ruan J et al (2010a) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  PubMed  CAS  Google Scholar 

  • Li WJ, Shi ZT, He XJ (2010b) Study on immune regulation in Hyriopsis cumingii Lea: effect of pearl-nucleus insertion in the visceral mass on immune factors present in the hemolymph. Fish Shellfish Immunol 28:789–794

    Article  PubMed  CAS  Google Scholar 

  • Liu XJ, Liu C, Chen L et al (2011) A new method to extract matrix proteins directly from the secretion of the mollusk mantle and the role of these proteins in shell biomineralization. Mar Biotechnol 13:981–991

    Article  PubMed  CAS  Google Scholar 

  • Lubov IC, Natalia ND, Sergey IB et al (2011) Long-term cultivation of primmorphs from freshwater Baikal sponges Lubomirskia baikalensis. Mar Biotechnol 13:782–792

    Article  Google Scholar 

  • Masato Y, Kouhei N, Koichi M et al (2006) Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp Biochem Physiol B 144:254–262

    Google Scholar 

  • Mathilde M, Paolo F, Rouvay R-W (2011) Differential growth-related gene expression in abalone (Haliotis midae). Mar Biotechnol 13:1125–1139

    Article  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S et al (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 102:1–18

    Google Scholar 

  • Miyamoto H, Yano M, Miyashita T (2003) Similarities in the structure of nacrein, the shell-matrix protein, in a bivalve and a gastropod. Molluscan Stud 69:87–89

    Article  Google Scholar 

  • Mu YN, Feng D, Peng C et al (2010) Transcriptome and expression profiling analysis revealed changes of multiple signaling pathways involved in immunity in the large yellow croaker during Aeromonas hydrophila infection. BMC Genomics 11:1–14

    Article  Google Scholar 

  • Nariaki I, Ryo I, Takashi I et al (2011) Gene expression patterns in the outer mantle epithelial cells associated with pearl sac formation. Mar Biotechnol 13:474–483

    Article  Google Scholar 

  • Nilsen W, Myrnes B, Edvardsen RB et al (2003) Urochordates carry multiple genes for goose-type lysozyme and no genes for chicken- or invertebrate-type lysozymes. Cell Mol Life Sci 60:2210–2218

    Article  PubMed  CAS  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG et al (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312

    Article  PubMed  Google Scholar 

  • Prager E, Jolles MP (1996) Animal lysozymes c and g: an overview. EXS 75:9e31

    Google Scholar 

  • Raul B, Miguel P, Conceicao E et al (2010) High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus. BMC Genomics 11:1–42

    Article  Google Scholar 

  • Sarashina I, Endo K (1998) Primary structure of a soluble matrix protein of scallop shell: implications for calcium carbonate biomineralization. Am Mineral 83:1510–1515

    CAS  Google Scholar 

  • Sarashina I, Yamaguchi H, Haga T et al (2006) Molecular evolution and functionally important structures of molluscan dermatopontin: implications for the origins of molluscan shell matrix proteins. J Mol Evol 62:307–318

    Article  PubMed  CAS  Google Scholar 

  • Shen XY, Belcher AM, Hansma PK et al (1997) Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 272:32472–32481

    Article  PubMed  CAS  Google Scholar 

  • Stephen M (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Tsukamoto D, Sarashina I, Endoshells K (2004) Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun 320:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Wang AM, Wang Y, Gu ZF et al (2011a) Development of expressed sequence tags from the pearl oyster, Pinctada martensii Dunker. Mar Biotechnol 13:275–283

    Article  PubMed  CAS  Google Scholar 

  • Wang XH, Lu G, Matthias W et al (2011b) Distribution of microfossils within polymetallic nodules: biogenic clusters within manganese layers. Mar Biotechnol. doi:10.1007/s10126-011-9393-4

  • Xiang LX, Ding H, Dong WR et al (2010) Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune relevant genes in marine fish. BMC Genomics 11:1–21

    Article  Google Scholar 

  • Yu FF, Gui JF, Zhou L et al (2009) Cloning and expression characterization of Dmart5 in Pinctada martensii. Acta Hydrobiol Sin 33:844–850

    Article  CAS  Google Scholar 

  • Yue X, Liu BZ, Xue QG (2011) An i-type lysozyme from the Asiatic hard clam Meretrix meretrix potentially functioning in host immunity. Fish Shellfish Immunol 30:550–558

    Article  PubMed  CAS  Google Scholar 

  • Zhang WB, Wu CL, Mai KS et al (2011) Molecular cloning, characterization and expression analysis of heat shock protein 90 from Pacific abalone, Haliotis discus hannai Ino in response to dietary selenium. Fish Shellfish Immunol 30:280–286

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Song L, Li C et al (2007) Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri and lytic activity of the recombinant protein. Mol Immunol 44:1198–1208

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, Song S, Wang QX et al (2009) Discovery of immune-related genes in chinesemitten crab (Eriocheir sinensis) by expressed sequence tag analysis of haemocytes. Aquaculture 287:297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The studies were financially supported by grants of National Key Technology R&D Program in the 11th Five year Plan of China (2007BAD29B01-2) and the Guangdong Marine and Fishery Bureau (A201008A02 and A201008A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Du.

Additional information

Xiaoxia Zhao and Qingheng Wang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Wang, Q., Jiao, Y. et al. Identification of Genes Potentially Related to Biomineralization and Immunity by Transcriptome Analysis of Pearl Sac in Pearl Oyster Pinctada martensii . Mar Biotechnol 14, 730–739 (2012). https://doi.org/10.1007/s10126-012-9438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9438-3

Keywords

Navigation