Skip to main content
Log in

Construction of cDNA subtractive library from pearl oyster (Pinctada fucata Gould) with red color shell by SSH

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The molecular basis of color polymorphism in the shells of the pearl oyster Pinctada fucata is largely unknown. We developed a red-shelled family line and used suppression subtractive hybridization (SSH) to screen for differentially expressed genes in red- and non-red-shelled pearl oysters. We constructed forward and reverse cDNA subtractive libraries consisting of 2 506 and 797 clones, respectively. Among 343 randomly selected clones in the forward library, 304 sequences were identified in GenBank using BLASTx and BLASTn. Of the 304 sequences, 13 showed no similarity to known sequences and 291 were matched with known genes of the pearl oyster, including shematrin-1, shematrin-2, shematrin-6, shematrin-7, nacrein, nacrein-like protein, aspein for shell matrix protein, glycine-rich protein, mantle gene 5, 28S, EST00031, EST00036, 16S, and COI. In the reverse library, 7 clones were sequenced and analyzed by BLAST. Two sequences shared similarity with EST00036 from the P. fucata subtraction cDNA library, four with the P. fucata mitochondrial gene for 16S rRNA and 1 with P. fucata shematrin-2. We evaluated the expression of 12 genes from the forward library using RT PCR. Two sequences matched with 16S and COI so were considered to be false positives. The remaining 10 sequences were differentially expression in the red-shelled pearl oysters. Our results suggest that differential expression of these genes may be related to color variation in the red-shelled family line of the pearl oyster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addadi L, Weiner S. 1985. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. PNAS, 82(12): 4 110–4 114.

    Article  Google Scholar 

  • Belcher A M, Wu X H, Christensen R J, Hansma P K, Stucky G D, Morse D E. 1996. Control of crystal phase switching and orientation by soluble mollusk-shell proteins. Nature, 381: 56–58.

    Article  Google Scholar 

  • Brake J, Evans F, Langdon C. 2004. Evidence for genetic control of pigmentation of shell and mantle edge in selected families of Pacific oyster, Crassostrea gigas. Aquaculture, 229(1–4): 89–98.

    Article  Google Scholar 

  • Bui L C, Leandri R D, Renard J P, Duranthon V. 2005. SSH adequacy to preimplantation mammalian development: Scarce specific transcripts cloning despite irregular normalization. BMC Genomics, 6: 155.

    Article  Google Scholar 

  • Chiba S. 1998. Character displacement, frequency-dependent selection, and divergence of shell colour in land snails Mandarina(Pulmonata). Biol. J. Linn. Soc., 66(4): 465–479.

    Google Scholar 

  • Comfort A. 1949a. Acid-soluble pigments of shells. 1. The distribution of porphyrin fluorescence in mollusean shells. Biochem. J., 44(1): 111–117.

    Google Scholar 

  • Comfort A. 1949b. Acid-soluble pigments of shells. 2. Pigments other than porphyrins. Biochem. J., 45(2): 199–204.

    Google Scholar 

  • Comfort A. 1951. The pigmentation of molluscan shells. Biol. Rev., 26(3): 285–301.

    Article  Google Scholar 

  • Day A J, Hawkins A J S, Visootiviseth P. 2000. The use of allozymes and shell morphology to distinguish among sympatric species of the rock oyster Saccostrea in Thailand. Aquaculture, 187(1–2): 51–72.

    Article  Google Scholar 

  • Duplat D, Puissegur M, Bedouet L, Rousseau M, Boulzaguet H, Milet C, Sellos D, Van Wormboudt A, Lopez E. 2006. Identification of calconectin, a calcium-binding protein specifically expressed by the mantle of Pinctada margaritifera. FEBS Letters, 580(10): 2 435–2 441.

    Article  Google Scholar 

  • Ekendahl A, Johannesson K. 1997. Shell colour variation in Littorina saxatilis Olivi (Prosobranchia: Littorinidae): a multi-factor approach. Biol. J. Linn. Soc., 62(3): 401–419.

    Google Scholar 

  • Ekendahl A. 1998. Colour polymorphic prey (littorina saxatilis Olivi) and predatory effects of a crab population (Carcinus maenas L.). J. Exp. Mar. Biol Ecol., 222(1–2): 239–246.

    Article  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L. 1996. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 271(5245): 67–69.

    Article  Google Scholar 

  • Hedegaard C, Bardeau J F, Chateigner D. 2006. Molluscan shell pigments: an in situ resonance raman study. J. Moll. Stud. Adv. Acc., 72(2): 157–162.

    Article  Google Scholar 

  • Jackson D J, McDougall C, Green K, Simpson F, Worheide G, Degnan B M, 2006. A rapidly evolving secretome builds and patterns a sea shell. BMC Biol., 4: 40–50.

    Article  Google Scholar 

  • Kobayashi T, Kawahara I, Hasekura O, Kijima A. 2004. Genetic control of bluish shell coloration variation in the Pacific abalone, Haliotis discus hannai. J. Shellfish. Res., 23: 1 153–1 156.

    Google Scholar 

  • Kobayashi I, Samata T. 2006. Bivalve shell structure and organic matrix. Mater. Sci. Eng. C., 26(4): 692–698.

    Article  Google Scholar 

  • Marelli D C, Arnold W S. 2001. Shell morphologies of Bay Scallops, Argopecten irradians, from extant and prehistoric populations from the Florida Gulf Coast: Implications for the biology of past and present metapopulations. J. Archae. Sci., 28(6): 577–586.

    Article  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A. 1996. A carbonic anhydrase from the nacreous layer in oyster pearls. PNAS, 93(18): 9 657–9 660.

    Article  Google Scholar 

  • Nagai K, Yano M, Morimoto K, Miyamoto H. 2007. Tyrosinase localization in mollusk shells. Comp. Biochem. Physiol. B, 146(2): 207–214.

    Article  Google Scholar 

  • Qin Y J, Liu X, Zhang H B, Zhang G F, Guo X M. 2006. Identification and mapping of amplified fragment length polymorphism markers linked to shell color in bay scallop, Argopecten irradians irradians (Lamarck, 1819). Mar. Biotechnol., 9(1): 66–73.

    Article  Google Scholar 

  • Sanford E, Mark D C, Christopher J L. 2009. Heritability of shell pigmentation in the Pacific oyster, Crassostrea gigas. Aquaculture, 286(3–4): 211–216.

    Google Scholar 

  • Slotow R, Goodfriend W, Ward D. 1993. Shell colour polymorphism of the Negev desert landsnail, Trochoidea seetzeni: the importance of temperature and predation. J. Arid. Envir., 24(1): 47–61.

    Article  Google Scholar 

  • Sokolova I M, Berger V J. 2000. Physiological variation related to shell colour polymorphism in White Sea Littorina saxatilis. J. Exp. Mar. Biol. Ecol., 245(1):1–23.

    Article  Google Scholar 

  • Sokolowski A, Fichet D, Garcia-Meunier P, Radenac G, Wolowicz M, Blanchard G. 2002. The relationship between metal concentrations and phenotypes in the Baltic clam Macoma balthica(L.) from the Gulf of Gdansk, southern Baltic. Chemosphere, 47(5): 475–484.

    Article  Google Scholar 

  • Takeuchi T, Endo K. 2005. Biphasic and dually coordinated expression of the genes encoding major shell matrix proteins in the pearl oyster Pinctada fucata. Mar. Biotechnol., 8(1): 52–61.

    Google Scholar 

  • Toshimasa K, Ikue K, Osamu H, Akihiro K. 2004. Genetic control of bluish shell color variation in the Pacific abalone, Haliotis discus hannai. J. Shellfish. Res., 23(4): 1 153–1 156.

    Google Scholar 

  • Tsukamoto D, Sarashina I, Endo K. 2004. Structure and expression of an unusually acidic matrix protein of pearl oyster shells. BBRC, 320(4): 1 175–1 180.

    Google Scholar 

  • Vershinin A. 1996. Carotenoids in mollusca: approaching the functions. Comp. Biochem. Physiol. B. Biochem. Mole. Biol., 113(1): 63–71.

    Article  Google Scholar 

  • Wada K T, Komaru A. 1994. Effect of selection for shell coloration on growth rate and mortality in the Japanese pearl oyster, Pinctada fucata martensii. Aquaculture, 125(1–2): 59–65.

    Google Scholar 

  • Wada K T, Komaru A. 1996. Color and weight of pearls produced by grafting the mantle tissue from a selected population for white shell color of the Japanese pearl oyster, Pinctada fucata martensii(Dunker). Aquaculture, 142(1–2): 25–32.

    Article  Google Scholar 

  • Wada K T. 1986. Genetic selection for shell traits in the Japanese pearl oyster, Pinctada fucata martensii. Aquaculture, 57(1–4): 171–176.

    Article  Google Scholar 

  • Ward D, Slotow R. 1997. Paedomorphosis and shell-colour polymorphism of a desert landsnail. J. Arid. Envir., 36(4): 677–685.

    Article  Google Scholar 

  • Weesie R J, Askin D, Jansen F J H M, de Groot H J M, Lugtenburg J, Britton G. 1995. Protein-chromophore interactions in α-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus A study by 13C magic angle spinning NMR. FEBS Letters, 362(1): 34–38.

    Article  Google Scholar 

  • Wilbur A E, Gaffney P M. 1997. A genetic basis for geographic variation in shell morphology in the bay scallop, Argopecten irradians. Mar. Biol., 128(1): 97–105.

    Article  Google Scholar 

  • Wilt F H, Killian C E, Livingston B T. 2003. Development of calcareous skeletal elements in invertebrates. Differentiation, 71(4–5): 237–250.

    Article  Google Scholar 

  • Winkler F M, Estevez B F, Jollan L B, Garrido J P. 2001. Inheritance of the general shell color in the scallop Argopecten purpuratus (Bivalvia: Pectinidae). J. Hered., 92(6): 521–525.

    Article  Google Scholar 

  • Yano M, Nagai K, Morimoto K, Miyamoto H. 2006. Shematrin: A family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp. Biochem. Physiol. B., 144(2): 254–262.

    Article  Google Scholar 

  • Zhang C, Zhang R Q. 2006. Matrix proteins in the outer shells of mollusks. Mar. Biotechnol., 8(6): 572–586.

    Article  Google Scholar 

  • Zheng H P, Zhang G F, Liu X. 2005. Comparison of growth and survival of larvae among different shell color stocks of bay scallop Argopecten irradians irradiants (Lamarck 1819). Chinese Journal of Oceanology and Limnology, 23(2): 183–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoxian He  (何毛贤).

Additional information

Supported by National High Technology Research and Development Program of China (863 Program) (No. 2006AA10A409), the Knowledge Innovation Program of the South China Sea Institute of Oceanology, Chinese Academy of Sciences (No. SQ200906), the Science and Technology Program of Guangdong Province (No. 2008A020100004), the National Key Technology Research and Development Program (No. 2007BAD29B01-8), and the Key Plan for Marine Development of Guangdong Province (No. A200708C01)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Y., Huang, L. & He, M. Construction of cDNA subtractive library from pearl oyster (Pinctada fucata Gould) with red color shell by SSH. Chin. J. Ocean. Limnol. 29, 616–622 (2011). https://doi.org/10.1007/s00343-011-0200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-011-0200-x

Keyword

Navigation