Skip to main content
Log in

Novel Proteins from the Calcifying Shell Matrix of the Pacific Oyster Crassostrea gigas

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The shell of the Pacific oyster Crassostrea gigas is composed of more than 99% CaCO3 and of around 0.5% of occluded organic matrix. According to classical views, this matrix is supposed to regulate the shell mineral deposition. In this study, we developed one of the first proteomic approaches applied to mollusk shell in order to characterise the calcifying matrix proteins. The insoluble organic matrix, purified after demineralisation of the shell powder, was digested with trypsin enzyme, and separated on nano-LC, prior to nanospray quadrupole/time-of-flight analysis. MS/MS spectra were searched against the above 220,000 EST sequences available in the public database for Crassostrea. Using this approach, we were able to identify partial or full-length sequence transcripts that encode eight novel shell matrix proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Amino acid

ASM:

Acid-soluble matrix

AIM:

Acid-insoluble matrix

EGF:

Epidermal growth factor

IMSP:

Insoluble matrix shell protein

SEM:

Scanning electron microscopy

EST:

Expressed sequence tag

References

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Eur Chem J 12:980–987

    Article  CAS  Google Scholar 

  • Carter JG (1990) Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York

    Google Scholar 

  • Checa AG, Esteban-Delgado FJ, Rodriguez-Navarro AB (2007) Crystallographic structure of the foliated calcite of bivalves. J Struc Biol 157:393–402

    Article  CAS  Google Scholar 

  • Donachy JE, Drake B, Sikes CS (1992) Sequence and atomic-force microscopy analysis of a matrix protein from the shell of the oyster Crassostrea virginica. Mar Biol 114:423–428

    Article  CAS  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite and calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Fleury E, Huvet A, Lelong C, de Lorgeril J, Boulo V, Gueguen Y, Bachère E, Tanguy A, Moraga D, Fabioux C, Lindeque P, Shaw J, Reinhart R, Prunet P, Davey G, Lapègue S, Sauvage C, Corporeau C, Moal J, Gavory F, Wincker P, Morrews F, Klopp C, Mathieu M, Boudry P, Favrel P (2009) Generation and analysis of a 29,745 unique expressed sequence tags from the Pacific oyster (Crassostrea gigas) assembled into a publicly accessible database: the GigasDatabase. BMC Genomics 10:341

    Article  PubMed  Google Scholar 

  • Gueguen Y, Cadoret J-P, Flament D, Barreau-Roumiguiere C, Girardot A-L, Garnier J, Hoareau A, Bachère E, Escoubas J-M (2003) Immune gene discovery by expressed sequence tags generated from hemocytes of bacterial-challenged oysters, Crassostrea gigas. Gene 303:139–145

    Article  PubMed  CAS  Google Scholar 

  • Halloran BA, Donachy JE (1995) Characterization of organic matrix macromolecules from the shells of the Antarctic scallop, Adamussium colbecki. Comp Biochem Physiol B 111:221–231

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Takeuchi Y, Miki D, Odo S (1995) Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family. J Biol Chem 270:6698–6701

    Article  PubMed  CAS  Google Scholar 

  • Joubert C, Piquemal D, Marie B, Manchon L, Pierrat F, Zanella-Cléon I, Cochennec-Laureau N, Gueguen Y, Montagnani C (2010) Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 11:613

    Article  PubMed  Google Scholar 

  • Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokshar DS, Montagnani C, Joubert C, Piquemal D, Degnan BM (2010) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27:591–608

    Article  PubMed  CAS  Google Scholar 

  • Kawagushi T, Watabe N (1993) The organic matrices of the shell of the American oyster Crassostrea virginica. J Exp Mar Biol Ecol 170:11–28

    Article  Google Scholar 

  • Lartaud F, Emmanual L, de Rafelis M, Pouvreau S, Renard M (2010) Influence of food supply on the δ13C signature of mollusc shells: implications for palaeoenvironmental reconstructions. Geo Mar Lett 30:23–34

    Article  CAS  Google Scholar 

  • Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124

    Article  CAS  Google Scholar 

  • Mann K, Wilt FH, Poustka AJ (2010) Proteomic analysis of the sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci 8:33

    Article  PubMed  Google Scholar 

  • Marie B, Luquet G, Pais De Barros J-P, Guichard N, Morel S, Alcaraz G, Bollache L, Marin F (2007) The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida): involvement of acidic polysaccharides from glycoproteins in nacre mineralization. FEBS J 274:2933–2945

    Article  PubMed  CAS  Google Scholar 

  • Marie B, Marin F, Marie A, Bédouet L, Dubost L, Alcaraz G, Milet C, Luquet G (2009) Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus. Chembiochem 10:1495–1506

    Article  PubMed  CAS  Google Scholar 

  • Marie B, Marie A, Jackson DJ, Dubost L, Degnan BM, Milet C, Marin F (2010) Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci 8:54

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276

    Article  PubMed  CAS  Google Scholar 

  • Maurer P, Hohebester E (1997) Structural and functional aspects of calcium binding in extracellular matrix proteins. Matrix Biol 15:569–580

    Article  PubMed  CAS  Google Scholar 

  • McDonald J, Freer A, Cusack M (2009) Alignment of crystallographic c-axis throughout the four distinct microstructural layers of the oyster Crassostrea gigas. Cryst Growth Des 10:1243–1246

    Article  Google Scholar 

  • Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009) Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4:e5661

    Article  PubMed  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci 93:9657–9660

    Article  PubMed  CAS  Google Scholar 

  • Samata T, Ikeda D, Kajikawa A, Sato H, Nogawa C, Yamada D, Yamazaki R, Akiyama T (2008) A novel phosphorylated glycoprotein in the shell matrix of the oyster Crassostrea nippona. FEBS J 275:2977–2989

    Article  PubMed  CAS  Google Scholar 

  • Sarashina I, Endo K (1998) Primary structure of a soluble matrix protein of the scallop shell: implications for calcium carbonate biomineralization. Am Mineral 83:1510–1515

    CAS  Google Scholar 

  • Sarashina I, Endo K (2001) The complete primary structure of molluscan shell protein (MSP-1), an acidic glycoprotein in the shell matrix of the scallop Patinopecten yessoensis. Mar Biotechnol 3:362–369

    Article  PubMed  CAS  Google Scholar 

  • Simkiss K (1965) The organic matrix of the oyster shell. Comp Biochem Physiol 16:427–435

    Article  PubMed  CAS  Google Scholar 

  • Tanguy A, Bierne N, Saavedra C, Pina B, Bachère E, Kube M, Bazin E, Bonhomme F, Boudry P, Boulo V, Boulet I, Cancela L, Dossat C, Favrel P, Huvet A, Jollivet D, Klages S, Lapègue S, Leite R, Moal J, Moraga D, Reinhardt R, Samain J-F, Zouros E, Canario A (2008) Increasing genomic information in bivalves through new EST collections in four species: development of new genetic markers for environmental studies and genome evolution. Gene 408:27–36

    Article  PubMed  CAS  Google Scholar 

  • Wheeler AP, Rusenko KW, Swift DM, Sikes CS (1988) Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix. Mar Biol 98:71–80

    Article  CAS  Google Scholar 

  • Wheeler AP, George JW, Evans CA (1981) Control of CaCO3 nucleation and crystal growth by soluble matrix of oyster shell. Science 212:1397–1398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work of B. Marie and F. Marin is financially supported by an ANR (ACCRO-EARTH, ref. BLAN06-2_159971, coordinator Gilles Ramstein, LSCE) during the period 2007–2011. A complementary financial support was provided by INSU (Action INTERVIE 2010) and by COST action TD0903 (Davorin Medakovic 2009–2013). The “Conseil Régional de Bourgogne” (Dijon, France) provided additional supports for the acquisition of new equipment in the Biogeosciences research unit (tabletop SEM microscope, Hitachi TM1000). B. Marie thanks Jérome Thomas for handling shell picture. The present protein sequences of IMSP-1, IMSP-2, IMSP-3, IMSP4, IMSP-5 and IMSP-6 appear in the UniProtKB under accession no. P86784-P86789 and were also named Gigasin-1, Gigasin-2, Gigasin-3, Gigasin-4, Gigasin-5 and Gigasin-6, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin Marie or Frédéric Marin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marie, B., Zanella-Cléon, I., Guichard, N. et al. Novel Proteins from the Calcifying Shell Matrix of the Pacific Oyster Crassostrea gigas . Mar Biotechnol 13, 1159–1168 (2011). https://doi.org/10.1007/s10126-011-9379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9379-2

Keywords

Navigation