Skip to main content
Log in

Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Correlations between structural properties of bivalve shell organic matrix and its proposed functions in the regulation of biomineralization were examined using proteinaceous fractions obtained from the shell of the oyster Crassostrea virginica (Gmelin) following dissolution of the mineral with ethylenediaminetetraacetate (EDTA). Matrix isolated in this way contains a continuous size distribution of proteins ranging from relatively small molecular weight (Mr) soluble matrix (SM) components to insoluble matrix (IM) components. Regulation of mineralization by these components was determined primarily by their reduction of crystal growth rate in an in vitro assay. For all fractions tested, there was an inverse correlation between Mr and regulatory activity. However, matrix properties other than molecular size may be important in regulation of crystal growth in vivo in that the larger but less acidic of two soluble matrix proteins was a more effective inhibitor of spicule formation by sea urchin embryos. Base treatment of IM and high molecular weight SM fractions that had little or no inhibitory activity when untreated, resulted in constituents that had a molecular weight distribution and in vitro inhibitory activity in the same range as whole SM. These results, combined with the finding that a major fraction of IM has an amino acid composition very similar to the highly charged SM fractions, suggest that much of the matrix is made up of similar molecules, and that their function in crystal growth regulation may change as they interact to form units of increasing size. A second class of IM was isolated which contained dihydroxyphenylalanine (dopa) and a preponderance of hydrophobic amino acids. This material may represent the basic structural framework of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Addadi, L., Weiner, S. (1985). Interactions between acidic proteins and crystals: stereo-chemical requirements in biomineralization. Proc. natl. Acad. Sci., USA 82: 4110–4114

    Google Scholar 

  • Anonymous (1973). Dequest 2010, phosphonate for scale and corrosion control, chelation, dispersion. Technical Bulletin No. IC ISCS-317, Mosanto Chemical Company

  • Anonymous (1983). Acrysol scale inhibitors. Technical Bulletin CS-513, Rohm and Haas Company

  • Beedham, G. E. (1958). Observations on the non-calcareous component of the shell of the Lamellibranchia. Quart. J. microsc. Sci. 99: 341–357

    Google Scholar 

  • Bernhardt, A. M., Manyak, D. M., Wilbur, K. M. (1985). In vitro recalcification of organic matrix of scallop shell and serpulid tubes. J. mollusc. Stud. 51: 284–289

    Google Scholar 

  • Borman, A. H., de Jong, E. W., Huizinga, M., Kok, D. S., Westbroek, P., Bosch, L. (1982). The role in CaCO3 crystallization of an acid Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxley. Eur. J. Biochem. 129: 179–183

    Google Scholar 

  • Crenshaw, M. A. (1972). The soluble matrix from Mercenaria mercenaria shell. Biomineralization 6: 6–11

    Google Scholar 

  • Crenshaw, M. A. (1982). Mechanisms of normal biological mineralization of calcium carbonate. In: Nancollas, G. H. (ed.) Biological mineralization and demineralization. Springer-Verlag, Berlin, p. 243–251

    Google Scholar 

  • Crenshaw, M. A., Ristedt, H. (1976). The histochemical localization of reactive groups in septal nacre from Nautilus pompilius L. In: Watabe, N., Wilbur, K. M. (eds.) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Columbia, South Carolina, p. 355–367

    Google Scholar 

  • Davis, N. R., Cavanagh, J. C. (1981). Hard tissue mineralization inhibitors. In: Veis, A. (ed.) The chemistry and biology of mineralized connective tissues. Elsevier-North Holland, New York, p. 489–491

    Google Scholar 

  • Degens, E. T., Spencer, D. W., Parker, R. H. (1967). Paleobiochemistry of molluscan shell proteins. Comp. Biochem. Physiol. 20: 553–579

    Google Scholar 

  • Galstoff, P. S. (1964). The American oyster Crassostrea virginica (Gmelin). Fish. Bull. US. 64: US Fish and Wildlife Service

  • Gordon, J., Carriker, M. R. (1980). Sclerotized protein in the shell matrix of a bivalve mollusc. Mar. Biol. 57: 251–260

    Google Scholar 

  • Greenfield, E. M., Wilson, D. C., Crenshaw, M. A. (1984). Ionotropic nucleation of calcium carbonate by molluscan matrix. Amer. Zool. 24: 925–932

    Google Scholar 

  • Grégoire, C. (1972). Structure of the molluscan shell. In: Florkin, M., Sheer, B. (eds.) vol. 7. Academic Press, New York, p. 45–102

    Google Scholar 

  • Grégoire, C., Duchâteau, G., Florkin, M. (1955). La trame protidique des nacres et des perles. Ann. Inst. Oceanogr., Paris 31: 1–36

    Google Scholar 

  • Hidaka, H., Tanaka, T. (1983). Naphthalene sulfonamides as calmodulin antagonists. In: Colowick, S. P., Kaplan, M. O. (eds.) Methods in enzymology. vol. 102. pp 185–194. Academic Press, New York, p. 185–194

    Google Scholar 

  • Kleinbaum, D., Kupper L. (1978). Applied regression analysis and other multivariable methods. Wadsworth, Belmont, California

    Google Scholar 

  • Krampitz, G., Drolshagen, H., Häusle, T., Hof-Irmscher, K. (1983). Organic matrix of mollusc shells. In: Westbroek, P., de Jong, E. W. (eds.) Biomineralization and biological metal accumulation. D. Reidel Publ. Co., Dordrecht, Holland, p. 231–247

    Google Scholar 

  • Krampitz, G., Engels, J., Cazaux, C. (1976). Biochemical studies on water-soluble proteins and related components of gastropod shells. In: Watabe, N., Wilbur, K. M. (eds.) The mechanisms of mineralization in the intervebrates and plants. Univ. of South Carolina Press, Columbia, South Carolina, p. 155–173

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein determination with the Folin phenol reagent. J. Biol. Chem. 193: 265–275

    Google Scholar 

  • Mann, S. (1983). Mineralization in biological systems. In: Clarke, M. T., Goodenough, J. B., Ibers, J. A., Jorgenson, C. K., Neilands, J. B., Reinen, D., Weiss, R., Williams, R. J. P. (eds.) Structure and bonding, vol. 54. Springer-Verlag, Berlin, p. 125–175

    Google Scholar 

  • Meenakshi, V. R., Hare, P. E., Wilbur, K. M. (1971). Amino acids of the organic matrix of the gastropod shells. Comp. Biochem. Physiol. 40B: 1037–1043

    Google Scholar 

  • Menanteau, J., Neuman, W. F., Neumann, W. W. (1982). A study of bone proteins which can prevent hydroxyapatite formation. Metab. Bone Dis. Rel. Res. 4: 157–162

    Google Scholar 

  • Miller, G. L. (1959): Protein determination for large numbers of samples. Anal. Chem. 31: 1964

    Google Scholar 

  • Reddy, M. M., Nancollas G. H. (1973). Calcite crystal growth inhibition by phosphonates. Desalination 12: 61–73

    Google Scholar 

  • Roer, R. D., Dillaman, R. M. (1984). The structure and calcification of the crustacean cuticle. Amer. Zool. 24: 893–910

    Google Scholar 

  • Sikes, C. S., Okazaki, K., Fink, R. D. (1981). Respiratory CO2 and the supply of inorganic carbon for calcification of sea urchin embryos. Comp. Biochem. Physiol. 70A: 285–291

    Google Scholar 

  • Sikes, C. S., Wheeler, A. P. (1982). Carbonic anhydrase and carbon dioxide fixation in coccolithophorids. J. Phycol. 18, 423–426

    Google Scholar 

  • Sikes, C. S., Wheeler, A. P. (1983). A systematic approach to some fundamental questions of carbonate calcification. In: Westbroek, P., de Jong, E. W. (eds.) Biomineralization and biological metal accumulation. D. Reidel Publ. Co., Dordrecht, Holland, p. 285–289

    Google Scholar 

  • Sikes, C. S., Wheeler, A. P. (1985).Inhibition of inorganic or biological CaCO3 deposition by polyamino acid derivatives. US Patent 4, 534, 881

    Google Scholar 

  • Sikes, C. S., Wheeler, A. P. (1986). The organic matrix from oyster shell as a regulator of calcification in vivo. Biol. Bull. 170: 494–505

    Google Scholar 

  • Sikes, C. S., Wheeler, A. P. (1988). Biopolymers from biominerals as regulators of mineralization. CHEMTECH, (In press)

  • Simkiss, K. (1965). The organic matrix of the oyster shell. Comp. Biochem. Physiol. 16: 427–435

    Google Scholar 

  • Termine, J. D., Eanes, E. D., Conn, K. M. (1980). Phosphoprotein modulation of apatite crystallization. Calcif. Tissue Int. 31: 247–251

    Google Scholar 

  • Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L., Martin, G. R. (1981). Osteonectin, a bonespecific protein linking mineral to collagen. Cell 36: 99–105

    Google Scholar 

  • Travis, D. E., Francois, C. J., Bonar, L. C., Glimcher, M. J. (1967). Comparative studies of the organic matrices of invertebrate mineralized tissues. J. Ultrastruct. Res. 18: 519–550

    Google Scholar 

  • Waite, J. H. (1983). Quinone-tanned soleroproteins. In: Wilbur, K. M. (ed.) The mollusca. vol. 1. Academic Press, New York, p. 467–504

    Google Scholar 

  • Waite, J. H., Benedict, C. V. (1984). Assay of dihydroxyphenylalanine (dopa) in invertebrate structural proteins. In: Colowick, J. P., Kaplan, N. O. (eds.) Methods in enzymology. vol. 107. Academic Press, New York, p. 297–413

    Google Scholar 

  • Wallace, R., Tallant, E., Cheung, W. (1980). Assay of calmodulin by Ca2+-dependent phosphodiesterase. In: Cheung, W. (ed.) Calcium and cell function. vol. 1. Academic Press, New York, p. 13–40

    Google Scholar 

  • Weiner, S. (1979). Aspartic acid-rich proteins: major components of the soluble organic matrix of mollusk shells. Calcif. Tissue Int. 29: 163–167

    Google Scholar 

  • Weiner, S. (1982). Separation of acidic proteins from mineralized tissues by reversed phase high-performance liquid chromatography. J. Chromatog. 245: 148–154

    Google Scholar 

  • Weiner, S. (1983). Mollusc shell formation: isolation of two organic matrix proteins associated with calcite deposition in the bivalve Mytilus californianus. Biochemistry 22: 4139–4145

    Google Scholar 

  • Weiner, S. (1984). Organization of organic matrix components in mineralized tissues. Amer. Zool. 24: 945–951

    Google Scholar 

  • Weiner, S. (1986): Organization of extracellularly mineralized tissues: A comparative study of biological crystal growth. Crit. Rev. Biochem. 20: 365–408

    Google Scholar 

  • Weiner, S., Hood, L. (1975). Soluble protein of the organic matrix of mollusc shells: a potential template for shell. Science, N.Y. 190: 987–989

    Google Scholar 

  • Weiner, S., Traub, W. (1980). X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett. 111: 311–316

    Google Scholar 

  • Weiner, S., Traub, W., Lowenstam, H. A. (1983). Organic matrix in calcified exoskeletons. In: Westbroek, P., de Jong, E. W. (eds.) Biomineralization and biological metal accumulation. D. Reidel Publ. Co., Dordrecht, Holland, p. 205–224

    Google Scholar 

  • Wheeler, A. P., George, J. W., Evans, C. A. (1981). Control of calcium carbonate crystal nucleation and crystal growth by soluble matrix of oyster shell. Science, N.Y. 212: 1397–1398

    Google Scholar 

  • Wheeler, A. P., Rusenko, K. W., George, J. W., Sikes, C. S. (1987). Evaluation of calcium binding by oyster soluble matrix and its role in biomineralization. Comp. Biochem. Physiol. 87B: 953–960

    Google Scholar 

  • Wheeler, A. P., Sikes, C. S. (1984). Regulation of carbonate calcification by organic matrix. Amer. Zool. 24: 933–944

    Google Scholar 

  • Wheeler, A. P., Sikes, C. S. (1986). Inhibition of the formation of inorganic or biological CaCO3-containing deposits by a proteinaceous fraction obtained from CaCO3-forming organisms. US Patent 4, 587, 021

    Google Scholar 

  • Whitaker, J. R. (1980). Changes occurring in proteins in alkaline solution. In: Whitaker, J. R., Fugimaki, M. (eds.) Chemical deterioration of proteins. American Chemical Society, Washington, p. 145–163

    Google Scholar 

  • Wilbur, K. M., Manyak, D. M. (1984). Biochemical aspects of molluscan mineralization. In: Costlow, J. C., Tipper, R. C. (eds.) Marine biodeterioration: an interdisciplinary study. Naval Institute Press, Annapolis, Maryland, p. 30–37

    Google Scholar 

  • Wilbur, K. M., Watabe, N. (1963). Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi. Ann. N.Y. Acad. Sci. 109: 82–112

    Google Scholar 

  • Zar, J. H. (1974). Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. P. Grassle, Woods Hole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, A.P., Rusenko, K.W., Swift, D.M. et al. Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix. Marine Biology 98, 71–80 (1988). https://doi.org/10.1007/BF00392660

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392660

Keywords

Navigation