Skip to main content
Log in

Purification and Characterization of Extracellular Phytase from a Marine Yeast Kodamaea ohmeri BG3

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The extracellular phytase in the supernatant of cell culture of the marine yeast Kodamaea ohmeri BG3 was purified to homogeneity with a 7.2-fold increase in specific phytase activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex™ G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow Anion-Exchange). According to the data from sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular mass of the purified enzyme was estimated to be 98.2 kDa while the molecular mass of the purified enzyme was estimated to be 92.9 kDa and the enzyme was shown to be a monomer according to the results of gel filtration chromatography. The optimal pH and temperature of the purified enzyme were 5.0 and 65°C, respectively. The enzyme was stimulated by Mn2+, Ca2+, K+, Li+, Na+, Ba2+, Mg2+ and Co2+ (at a concentrations of 5.0 mM), but it was inhibited by Cu2+, Hg2+, Fe2+, Fe3+, Ag+, and Zn2+ (at a concentration of 5.0 mM). The enzyme was also inhibited by phenylmethylsulfonyl fluoride (PMSF), iodoacetic acid (at a concentration of 1.0 mM), and phenylgloxal hydrate (at a concentration of 5.0 mM), and not inhibited by EDTA and 1,10-phenanthroline (at concentrations of 1.0 mM and 5.0 mM). The K m, V max, and K cat values of the purified enzyme for phytate were 1.45 mM, 0.083 μmol/ml · min, and 0.93 s-1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adams A, Gottschling DE, Kaiser CA, Stearns T (1998) Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. (Cold Spring Habbor, NY: Cold Spring Harbor Laboratory Press) pp 84–88

    Google Scholar 

  • Bindu S, Somashekar D, Joseph R (1998) A comparative study on permeabilization treatments for in situ determination of phytase of Rhodotorula gracilis. Lett Appl Microbiol 27, 336–340

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–253

    Article  PubMed  CAS  Google Scholar 

  • Chi Z, Kohlwein SD, Paltauf F (1999) Role of phosphatidylinositol (PI) in ethanol production and ethanol tolerance by highly ethanol producing yeasts. J Indus Microbiol Biotechnol 22, 58–63

    Article  CAS  Google Scholar 

  • Chi Z, Liu Z, Gao L, Gong F, Ma C, Wang X, Li H (2006) Marine yeasts and their applications in mariculture. J Ocean Univ China 5, 251–256

    Article  CAS  Google Scholar 

  • Dvorakova J, Volfova O, Kopecky J (1997) Characterization of phytase produced by Aspergillus niger. Folia Microbiol 42, 349–352

    Article  CAS  Google Scholar 

  • George V, Diwan AM (1983) Simultaneous staining of proteins during polyacrylamide gel electrophoresis in acidic gels by countermigration of Coomassie brilliant blue R-250. Anal Biochem 132, 481–483

    Google Scholar 

  • Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68, 588–597

    Article  PubMed  CAS  Google Scholar 

  • Han YM, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys 364, 83–90

    Article  PubMed  CAS  Google Scholar 

  • Han YM, Wilson DB, Lei XG (1999) Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65, 1915–1918

    PubMed  CAS  Google Scholar 

  • Hirimuthugoda NY, Chi Z, Li X, Wang L, Wu L (2006) Diversity of phytase-producing marine yeasts. Ciencias Marinas 32, 673–682

    Google Scholar 

  • Jareonkitmongkol S, Ohya M, Watanab R, Takagi H, Nakamori S (1997) Partial purification of phytase from a soil isolate bacterium, Klebsiella oxytoca MO-3. J Ferment Bioeng 83, 393–394

    Article  CAS  Google Scholar 

  • Kaur P, Lingner A, Singh B, Boer E, Polajeva J, Steinborn G, Bode R, Gellissen G, Satyanarayana T, Kunze G (2007) APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity. J Antonie Van Leeuwenhoek 91, 45–55

    Article  CAS  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64, 2079–2085

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227, 680–685

    Article  PubMed  CAS  Google Scholar 

  • Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AWM, Van-Loon APGM (1999) An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 63, 373–381

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Suzuki T, Tokuda J, Kato N, Sakai Y, Mochizuki D, Takhashi H (1999) Secretory manufacture of Schwanniomyces occidentalis phytase using a Candida boidinii host. Eur Patent Appl Ep 931, 837 July 28

    Google Scholar 

  • Pandey A, Szakacs G, Soccol CR, Rodriguez-Leond JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresource Technol 77, 203–214

    Article  CAS  Google Scholar 

  • Ramirez-Zavala B, Mercado-Flores Y, Hernadez-Rodriguez C, Villa-Tanaca L (2004) Purification and characterization of lysine aminopeptidase from Kluyveromyces marxiamus. FEMS Microbiol Lett 235, 369–375

    Article  PubMed  CAS  Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21, 33–38

    Article  CAS  Google Scholar 

  • Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of the phytase from Schwanniomycescastellii. J Ferment Bioeng 74, 7–11

    Article  CAS  Google Scholar 

  • Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme Microb Technol 35, 3–14

    Article  CAS  Google Scholar 

  • Vohara A, Satyanarayana T (2004) A cost effective molasses medium for enhanced cell bound phytase production by Pichia anomala. J Appl Microbiol 97, 471–476

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Hi-Tech Research and Development Program of China (863), the grant No is 2006AA09Z403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Chi, Z., Liu, Z. et al. Purification and Characterization of Extracellular Phytase from a Marine Yeast Kodamaea ohmeri BG3. Mar Biotechnol 10, 190–197 (2008). https://doi.org/10.1007/s10126-007-9051-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9051-z

Keywords

Navigation