Skip to main content
Log in

APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The extracellular acid phosphatase-encoding Arxula adeninivorans APHO1 gene was isolated using degenerated specific oligonucleotide primers in a PCR screening approach. The gene harbours an ORF of 1449 bp encoding a protein of 483 amino acids with a calculated molecular mass of 52.4 kDa. The sequence includes an N-terminal secretion sequence of 17 amino acids. The deduced amino acid sequence exhibits 54% identity to phytases from Aspergillus awamori, Asp. niger and Asp. ficuum and a more distant relationship to phytases of the yeasts Candida albicans and Debaryomyces hansenii (36–39% identity). The sequence contains the phosphohistidine signature and the conserved active site sequence of acid phosphatases. APHO1 expression is induced under conditions of phosphate limitation. Enzyme isolates from wild and recombinant strains with the APHO1 gene expressed under control of the strong A. adeninivorans-derived TEF1 promoter were characterized. For both proteins, a molecular mass of approx. 350 kDa, corresponding to a hexameric structure, a pH optimum of pH 4.8 and a temperature optimum of 60°C were determined. The preferred substrates include p-nitrophenyl-phosphate, pyridoxal-5-phosphate, 3-indoxyl-phosphate, 1-naphthylphosphate, ADP, glucose-6-phosphate, sodium-pyrophosphate, and phytic acid. Thus the enzyme is a secretory acid phosphatase with phytase activity and not a phytase as suggested by strong homology to such enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böer E, Wartmann T, Luther B, Manteuffel R, Bode R, Gellissen G, Kunze G (2004) Characterization of the AINV gene and the encoded invertase from the dimorphic yeast Arxula adeninivorans. Antonie van Leeuwenhoek 86:121–134

    Article  PubMed  Google Scholar 

  • Böer E, Wartmann T, Schmidt S, Bode R, Gellissen G, Kunze G (2005a) Characterization of the AXDH gene and the encoded xylitol dehydrogenase from the dimorphic yeast Arxula adeninivorans. Antonie van Leeuwenhoek 87:233–243

    Article  CAS  Google Scholar 

  • Böer E, Mock HP, Bode R, Gellissen G, Kunze G (2005b) An extracellular lipase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ALIP1 gene and characterization of the purified recombinant enzyme. Yeast 22:523–535

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Büttner R, Bode R, Birnbaum D (1991) Characterization of extracellular acid phosphatases from the yeast Arxula adeninivorans. Zbl Mikrobiol 146:399–406

    Google Scholar 

  • Davis E, Larkins BA, Knight RH (1972) Polysomes from peas. An improved method for their isolation in the absence of ribonuclease inhibitors. Plant Physiol 50:581–584

    Article  Google Scholar 

  • Elliott S, Chang C, Schweingruber ME, Schaller J, Rickli EE, Carbon J (1986) Isolation and characterization of the structural gene for secreted acid phosphatase from Schizosaccharomyces pombe. J Biol Chem 261:2936–2941

    PubMed  CAS  Google Scholar 

  • Ferminan E, Dominguez A (1997) The KlPHO5 gene encoding a repressible acid phosphatase in the yeast Kluyveromyces lactis: cloning sequencing and transcriptional analysis of the gene, and purification and properties of the enzyme. Microbiology 143:2615–2625

    Article  PubMed  CAS  Google Scholar 

  • Gienow U, Kunze G, Schauer F, Bode R, Hofemeister J (1990) The yeast genus Trichosporon spec. LS3; molecular characterization of genomic complexity. Zbl Mikrobiol 145:3–12

    CAS  Google Scholar 

  • Greiner R, Farouk A, Alminger ML, Carlsson NG (2002) The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytate-degrading enzymes of different Bacillus ssp. Can J Microbiol 48:986–994

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of E. coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  • Kapteyn JC, Montijn RC, Vink E, de la Cruz J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked β-1,3-/β-1, 6-glucan heteropolymer. Glycobiology 6:337–345

    PubMed  CAS  Google Scholar 

  • Kunze G, Kunze I (1994) Characterization of Arxula adeninivorans strains from different habitats. Antonie van Leeuwenhoek 65:29–34

    Article  PubMed  CAS  Google Scholar 

  • Kunze I, Hillmer S, Kunze G, Müntz K (1995) Befeldin A differentially affects protein secretion from suspension-cultured tobacco cells (Nicotiana tabacum L.). J Plant Physiol 146:71–80

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during assembly of the head of bacteriophage T4. Nature (London) 227:680–685

    Article  CAS  Google Scholar 

  • Middelhoven JW, Hoogkamer-Te Niet MC, Kreger van Rij NJW (1984) Trichosporon adeninovorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary n-alkylamines as the sole source of carbon, nitrogen and energy. Antonie van Leeuwenhoek 50:369–387

  • Middelhoven WJ, de Jonge IM, Winter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonie van Leeuwenhoek 60:129–137

    Article  Google Scholar 

  • Middelhoven WJ, Coenen A, Kraakman B, Gelpke MDS (1992) Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie van Leeuwenhoek 62:181–187

    Article  PubMed  CAS  Google Scholar 

  • Middelhoven WJ (1993) Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. Antonie van Leeuwenhoek 63:125–144

    Article  PubMed  CAS  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AHJ (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    Article  PubMed  CAS  Google Scholar 

  • Oshima Y (1982) Regulatory circuits for gene expression: the metabolism of galactose and phosphate. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 150–180

    Google Scholar 

  • Payne WE, Gannon PM, Kaiser CA (1995) An inducible acid phosphatase from the yeast Pichia pastoris: characterization of the gene and its product. Gene 163:19–26

    Article  PubMed  CAS  Google Scholar 

  • Phongdara A, Merckelbach A, Keup P, Gellissen G, Hollenberg CP (1998) Cloning and characterization of the gene encoding a repressible acid phosphatase (PHO1) from the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 50:77–84

    Article  PubMed  CAS  Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Rösel H, Kunze G (1995) Cloning and characterization of a TEF gene for elongation factor 1α from the yeast Arxula adeninivorans. Curr Genet 28:360–366

    Article  PubMed  Google Scholar 

  • Rösel H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on Hygromycin B resistance. Curr Genet 33:157–163

    Article  PubMed  Google Scholar 

  • Sajidan A, Farouk A, Greiner R, Jungblut P, Müller EC, Borriss R (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Samsonova IA, Kunze G, Bode R, Böttcher F (1996) A set of genetic markers for the chromosomes of the imperfect yeast Arxula adeninivorans. Yeast 12:1209–1217

    Article  PubMed  CAS  Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38

    Article  CAS  Google Scholar 

  • Schweingruber ME (1987) Acid and alkaline phosphatases in yeast. Adv Protein Phosphatases 4:77–93

    CAS  Google Scholar 

  • Smith CL, Klo S, Cantor CR (1988) Pulsed field gel electrophoresis and technology of large DNA molecules. In: Davis K (ed) Genome analysis, a practical approach. IPL Press, Oxford, pp 41–72

    Google Scholar 

  • Steensma HY, de Jonge P, de Kaptein A, Kaback DB (1989) Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: localization of repeated sequence containing an acid phosphatase gene near a telomere of chromosome I and chromosome VIII. Curr Genet 16:131–137

    Article  PubMed  Google Scholar 

  • Stoltenburg R, Wartmann T, Kunze I, Kunze G (1995) Reliable method to separate free and membrane-bound polysomes from different yeast species. Bio/Techniques 18:564–568

    CAS  Google Scholar 

  • Tanaka A, Ohnishi N, Fukui S (1967) Studies on the formation of vitamins and their function in hydrocarbon fermentation. Production of vitamin B6 by Candida albicans in hydrocarbon medium. J Ferment Technol 45:617–623

    CAS  Google Scholar 

  • Van der Walt JP, Smith MT, Yamada Y (1990) Arxula gen. nov. (Candidaceae), a new anamorphic, arthroconidial yeast genus. Antonie van Leeuwenhoek 57:59–61

    Article  PubMed  Google Scholar 

  • Van Etten RL, Davidson R, Stevis PE, MacArthur H, Moore DL (1991) Covalent structure, disulfide bonding and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem 266:2313–2319

    PubMed  Google Scholar 

  • Vogel K, Hörz W, Hinnen A (1989) The two positively acting regulatory proteins Pho2 and Pho4 physically interact with PHO5 upstream activation regions. Mol Cell Biol 9:2050–2057

    PubMed  CAS  Google Scholar 

  • Vogel K, Hinnen A (1990) The yeast phosphatase system. Mol Microbiol 4:2013–2017

    Article  PubMed  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2004) A cost effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. J Appl Microbiol 97:471–476

    Article  PubMed  CAS  Google Scholar 

  • Wartmann T, Kunze G (2000) Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 54:619–624

    Article  PubMed  CAS  Google Scholar 

  • Wartmann T, Erdmann J, Kunze I, Kunze G (2000) Morphology-related effects on gene expression and protein accumulation of the yeast Arxula adeninivorans LS3. Arch Microbiol 173:253–261

    Article  PubMed  CAS  Google Scholar 

  • Wartmann T, Böer E, Huarto-Pico A, Sieber H, Bartelsen O, Gellissen G, Kunze G (2002) High-level production and secretion of recombinant proteins by the dimorphic yeast Arxula adeninivorans. FEMS Yeast Res 2:363–369

    PubMed  CAS  Google Scholar 

  • Wartmann T, Stoltenburg R, Böer E, Sieber H, Bartelsen O, Gellissen G, Kunze G (2003) The ALEU2 gene – a new component for an Arxula adeninivorans-based expression platform. FEMS Yeast Res 3:223–232

    Article  PubMed  CAS  Google Scholar 

  • Yoda K, Ko JH, Nagamatsu T, Lin Y, Kaibara C, Kawada T, Tomishige N, Hashimoto H (2000) Molecular characterization of a novel yeast cell-wall acid phosphatase cloned from Kluyveromyces lactis. Biosci Biotechnol Biochem 64:142–148

    Article  PubMed  CAS  Google Scholar 

  • Zaret KS, Sherman F (1982) DNA sequence required for efficient transcription termination in yeast. Cell 28:265–273

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. I. Kunze for helpful discussions and critical reading of the manuscript. We also thank H. Bohlmann and R. Franz for excellent technical assistance. The research work was supported by grants from DAAD (Grant No. KunzD04/34139) and DST (TS-INT/DAAD/P-108/2004), a DAAD scholarship (A/04/06850) and by Funds from the Chemical Industry (GK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gotthard Kunze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, P., Lingner, A., Singh, B. et al. APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity. Antonie van Leeuwenhoek 91, 45–55 (2007). https://doi.org/10.1007/s10482-006-9094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9094-6

Keywords

Navigation