Skip to main content
Log in

Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review

  • Review
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

The outburst of green biotechnology has facilitated a substantial upsurge in the usage of enzymes in a plethora of industrial bioconversion processes. The tremendous biocatalytic potential of industrial enzymes provides an upper edge over chemical technologies in terms of safety, reusability, and better process control. Tannase is one such enzyme loaded with huge potential for bioconversion of hydrolysable tannins to gallic acid. Tannins invariably occur in pteridophytes, gymnosperms, and angiosperms and predominately cumulate in plant parts like fruits, bark, roots, and leaves. Furthermore, toxic tannery effluents from various tanneries are loaded with significant levels of tannins in the form of tannic acid. Tannase can be principally employed for debasing the tannins that predominately occur in the toxic tannery effluents thus providing a relatively much cheaper measure for their biodegradation. Over the years, microbial tannase-catalyzed tannin degradation has gained momentum. The plentious availability of tannin-containing agro- and industrial waste paves a way for efficient utilization of microbial tannase for tannin degradation eventually resulting into gallic acid production. Gallic acid has received a great deal of attention as a molecule of enormous therapeutic and indusrial potential. The current worldwide demand of gallic acid is 8000 t per annum. As a matter of fact, bioconversion of tannins into gallic acid through fermentation has not been exploited completely. This necessitates further studies for development of more efficient, economical, productive processes and improved strains for gallic acid production so as to meet its current demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • (2015a) India industrial enzyme market: forecast and opportunities 2020. http://www.pharmaion.com/report/india-industrial-enzymes-market-forecast-andopportunities-2020/10.html

  • (2015b) Industrial enzymes market by type (carbohydrases, proteases, non-starch polysaccharides & others), application (food & beverage, cleaning agents, animal feed & others), brands & by region—global trends and forecasts to 2020. www.bccresearch.com. http://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market237327836.html

  • Abdel-Nabey MA, Sherief AA, EL-Tanash AB (1999) Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. J Appl Microbiol 87:108–114

    Article  Google Scholar 

  • Abdel-Nabey MA, Sherief AA, EL-Tanash AB (2011) Tannin biodegradation and some factors affecting tannase production by two Aspergillus sp. Biotechnol 10(2):149–158

    Article  CAS  Google Scholar 

  • Aguilar CN, Gutierrez-Sanchez G (2001) Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int 7:373–382

    Article  CAS  Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-Gonzalez G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    Article  CAS  PubMed  Google Scholar 

  • Aguilar CN, Rodriguez R, Gutierrez-Sanchez G, Augur C, Favela-Torres E, Prado-Barragan LA, Ramirez-Coronel A, Contreras-Esquivel JC (2007) Microbial Tannases: advances and perspectives. Appl Microbiol Biotechnol 76:47–59

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Zarate P, Cruz-Hernandez MA, Montanez JC, Belmares-Cerda RE, Aguilar CN (2014) Enhancement of tannase production by Lactobacillus plantarum CIR1: validation in gas-lift bioreactor. Bioproc Biosyst Eng 37:2305–2316

    Article  CAS  Google Scholar 

  • Aguilera-Carbo A, Augur C, Prado-Barragan LA, Favela-Torres E, Aguilar CN (2008) Microbial production of ellagic acid and biodegradation of ellagitannins. Appl Microbiol Biotechnol 78(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Ahmed ME, Rhman HJA (2014) Detection of the perfect condition to produce the tannase from Aspergillus niger at different medium. Journal of Babylon University/Pure and Applied Sciences 22:1363–1371

    Google Scholar 

  • Aithal M, Belur PD (2013) Enhancement of propyl gallate yield in nonaquous medium using novel cell-associated tannase of Bacillus massiliensis. Prep Biochem Biotechnol 43:445–455

    Article  CAS  PubMed  Google Scholar 

  • Aoki KS, Hinke R, Nishira H (1976) Purification and some properties of yeast tannase. Agric Biol Chem 40:79–85

    CAS  Google Scholar 

  • Arulnathan N, Murugan M, Balakrishnan V (2013) Proximate principles, fibre fraction and mineral content of black gram husk ( Vigna mungo). Int J Livest Res 3(3):24–30

    Google Scholar 

  • Ayed L, Hamdi M (2002) Culture conditions of tannase production by Lactobacillus plantarum. Biotechnol Lett 24:1763–1765

    Article  CAS  Google Scholar 

  • Bagga J, Pramanik SK, Pandey V (2015) Production and purification of tannase from Aspergillus aculeatus using plant derived raw tannin. Int J Sci Eng Technol 4:50–55

    CAS  Google Scholar 

  • Bajpai B, Patil S (1996) Tannin acyl hydrolase (EC 3.1.1.20) activity of Aspergillus, Penicillium, Fusarium and Trichoderma. World J Microbiol Biotechnol 12:217–220

    Article  CAS  PubMed  Google Scholar 

  • Bajpai B, Patil S (1997) Induction of tannin acyl hydrolase (EC 3.1.1.20) activity in some members of fungi imperfecti. Enzym Microb Technol 20:612–614

    Article  CAS  Google Scholar 

  • Bajpai B, Patil S (2008) A new approach to microbial production of gallic acid. Braz J Microbiol 39:708–711

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee R (2004) Gallic acid. In: Concise encyclopedia of biotechnology. Haworth Press, Binghamton, pp 629–634

    Google Scholar 

  • Banerjee D, Mondal KC, Pati BR (2001) Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF 9. J Basic Microbiol 41:313–318

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Mukherjee G, Patra KC (2005) Microbial transformation of tannin-rich substrate to gallic acid through co-culture method. Bioresour Technol 96:949–953

    Article  CAS  PubMed  Google Scholar 

  • Banerjee D, Mondal KC, Pati BR (2007) Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation. Acta Microbiol Immunol Hung 54(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of a Tannase from Aspergillus niger LCF-8. J Ferm Bioeng 77:320–323

    Article  CAS  Google Scholar 

  • Batra A, Saxena RK (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem 40:1553–1557

    Article  CAS  Google Scholar 

  • Battestin V, Macedo GA (2007) Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electron J Biotechnol 10:191–199

    Article  CAS  Google Scholar 

  • Beena PS, Soorej MB, Elyas KK, Bhat Sarita G, Chandrasekaran M (2010) Acidophilic tannase from marine Aspergillus awamori BTMFW032. J Microbiol Biotechnol 20(10):1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Belmares RE, Reyes-Vega ML, Contreras-Esquivel JC, Rodríguez Herrera R, Aguilar CN (2003) Effects of carbon sources on production of tannase using Aspergillus niger. Rev Mex Ing Chim 2(1):95–100

    Google Scholar 

  • Belmares R, Contreras-Esquivel JC, Rodriguez-Herrera R, Coronel AR, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. LWT Food Sci Technol 37:857–864

    Article  CAS  Google Scholar 

  • Belur PD, Mugeraya G (2011) Microbial production of tannase. Res J Microbiol 6:25–40

    Article  CAS  Google Scholar 

  • Belur PD, Mugeraya G, Kuppalu NR (2010) Temperature and pH stability of a novel cell- associated tannase of Serratia ficaria DTC. Int J Biotechnol Biochem 6:667–674

    Google Scholar 

  • Belur PD, Goud R, Goudar DC (2012) Optimization of culture medium for novel cell associated tannase production from Bacillus massiliensis using response surface methodology. J Microbiol Biotechnol 22:199–206

    Article  CAS  PubMed  Google Scholar 

  • Beniwal V, Chhokar V (2010) Statistical optimization of culture conditions for tannase production by Aspergillus awamori MTCC 9299 under submerged fermentation. Asian J Biotechnol 2(1):46–52

    Article  CAS  Google Scholar 

  • Beniwal V, Chhokar V, Singh N, Sharma J (2010) Optimization of process parameters for the production of tannase and gallic acid by Enterobacter cloacae MTCC 9125. J Am Sci 6(8):389–397

    Google Scholar 

  • Beniwal V, Kumar A, Goel G, Chhokar V (2013) A novel low molecular weight acido-thermophilic tannase from Enterobacter cloacae MTCC 9125. Biocatal Agric Biotechnol 2:132–137

    Article  Google Scholar 

  • Bharagava RN, Yadav S, Chandra R (2014) Antibiotic and heavy metal resistance properties of bacteria isolated from the aeration lagoons of common effluent treatment plant (CETP) of tannery industries (Unnao, India). Indian J Biotechnol 13(4):514–519

    CAS  Google Scholar 

  • Bharathiraja S, Suriya J, Krishnan M, Manivasagan P, Kim SK (2017) Production of enzymes from agricultural wastes and their potential industrial applications. Adv Food Nutr Res 80:125–148

    Article  CAS  PubMed  Google Scholar 

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins-a current perspective. Biodegrad 9:343–357

    Article  CAS  Google Scholar 

  • Bhoite RN, Murthy PS (2015) Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application. Food Bioprod Process 94:727–735

    Article  CAS  Google Scholar 

  • Boer E, Bode R, Mock HP, Piontek M, Kunze G (2009) Atan1p—an extracellular tannase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme. Yeast 26(6):323–337

    Article  CAS  PubMed  Google Scholar 

  • Bradoo S, Gupta R, Saxena R (1996) Screening of extracellular tannase producing fungi: development of a rapid simple plate assay. J Gen Appl Microbiol 42:325–329

    Article  CAS  Google Scholar 

  • Carpenter J, Sharma S, Sharma AK, Verma S (2013) Adsorption of dye by using the solid waste from leather industry as an adsorbent. Int J Eng Sci Invent 2(1):64–69

    Google Scholar 

  • Cavalcanti RMF, Pedro Henrique de Oliveira Ornela PHO, Jorge JA, Guimaraes LHS (2017) Screening, Selection and optimization of the culture conditions for tannase production by endophytic fungi isolated from Caatinga. J Appl Biol Biotechnol 5(1):001–009

    CAS  Google Scholar 

  • Cerda-Gomez A, Contreras-Esquivel JC, Reyes-Valdes H, Rodríguez R, Aguilar CN (2006) Molecular characterization of Aspergillus strains producers of tannase. In: Proceedings of the Second International Congress on Food Science and Technology in Developing Countries, Saltillo, Coahuila, Mexico (FEMB-18)

  • Chavez Gonzalez ML, Buenrostro-Figueroa J, Rodriguez Duran LV, Zarate PA, Rodriguez R, Rodriguez-Jasso RM, Ruiz HA, Aguilar CN (2017) Tannases. In: Pandey A, Negi S, Soccol CR (eds.) Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. Elsevier, pp 471-489

  • Chavez-Gonzalez M, Rodríguez-Duran LV, Balagurusamy N (2012) Biotechnological advances and challenges of tannase: an overview. Food Bioprocess Technol 5:445–459

    Article  CAS  Google Scholar 

  • Chhokar V, Katiyar S, Beniwal V, Kumar A, Rana JS (2008) Immobilization of tannase for commercial use in food industries. Asian J Bio Sci 3(2):275–278

    Google Scholar 

  • Chowdhury SP, Khanna S, Verma SC (2004) Molecular diversity of tannic acid degrading bacteria isolated from tannery soil. J Appl Microbiol 97:1210–1219

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Hernandez M, Contreras JC, Lima N, Teixeira J, Aguilar CN (2009) Production of Aspergillus niger GH1 tannase using solidstate fermentation. J Pure Appl Microbio 3(1):21–26

    CAS  Google Scholar 

  • Curiel JA, Rodríguez H, Acebron I, Mancheno JM, De Blanca RL, Munoz R (2009) Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. J Agric Food Chem 57(14):6224–6230

    Article  CAS  PubMed  Google Scholar 

  • Curiel JA, Betancor L, de Las RB et al (2010) Hydrolysis of tannic acid catalysed by immobilized-stabilized derivatives of tannase from Lactobacillus plantarum. J Agric Food Chem 58:6403–6409

    Article  CAS  PubMed  Google Scholar 

  • Darah I, Sumathi G, Jan K, Hang LS (2011) Involvement of physical parameters in medium improvement for tannase production by A.niger FETL FT3 in submerged fermentation. J Chem Pharm Res 3(4):436–444

    Google Scholar 

  • Das MPK, Mondal KC, Pati BR (2006) Production of tannase through submerged fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6. Pol J Microbiol 55:297–301

    Google Scholar 

  • Das MPK, Mondal KC, Pati BR (2007) Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads. J Appl Microbiol 146:1462–1467

    Google Scholar 

  • Das MPK, Maity C, Rao RS, Pati BR, Mondal KC (2009) Tannase production by Bacillus licheniformis KBR6: optimization of submerged culture conditions by Taguchi DOE methodology. Food Res Int 42:430–435

    Article  CAS  Google Scholar 

  • Deepa C, Lavanya B, Latha S (2015) Purification of tannase from Aspergillus niger under solid state fermentation. World J Pharm Pharm Sci 4:993–1001

    CAS  Google Scholar 

  • Deschamps AM, Lebeault JM (1984) Production of gallic acid from tara (Caesalpinia spinosa) tannin by bacterial strains. Biotechnol Lett 6:237–242

    Article  CAS  Google Scholar 

  • Deschamps AM, Lebeault JM, Moo-Young M, Robinson CW (1981) Advances in biotechnology. Pergamon Press, New York, pp 639–643

    Google Scholar 

  • Deschamps AM, Otuk G, Lebault JM (1983) Production of tannase and degradation of chestnut tannins by bacteria. J Ferment Technol 61:55–59

    CAS  Google Scholar 

  • Dhiman S, Mukherjee G, Kumar A, Mukherjee P, Verekar SA, Deshmukh SK (2017) Fungal tannase: recent advances and industrial applications. In: Satyanarayana T, Deshmukh S, Johri B (eds.) Developments in fungal biology and applied mycology. Springer, Singapore, pp 295–313

  • Dixit S, Yadav A, Dwivedi PD, Das M (2015) Toxic hazards of leather industry and technologies to combat threat: a review. J Clean Prod 87:39–49

    Article  CAS  Google Scholar 

  • El-Fouly MZ, El Awamry Z, Shahin Azza AM, El-Bialy HA, Narem E, El Saeed GE (2012) Gallic acid formation from gallotanins rich agricultural wastes using Aspergillus niger UMC4301 or its tannase enzyme. Ar J Nucl Sci Appl 45(2):489–496

    Google Scholar 

  • Enemour SC, Odibo FJ (2009) Culture conditions of production of a tannase of Aspergillus tamari IMI388810 (B). Afr J Biotechnol 11:2554–2557

    Google Scholar 

  • Farias GM, Gorbea C, Elkins JR, Griffin GJ (1994) Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol Mol Plant Pathol 44:51–63

    Article  CAS  Google Scholar 

  • Fernbach MA (1900) Compt Rend 131:1214–1215

    Google Scholar 

  • Field JA, Lettinga G (1987) The methanogenic toxicity and anaerobic degradability of a hydrolysable tannin. Water Res 21:367–374

    Article  CAS  Google Scholar 

  • Flores-Maltos A, Rodríguez-Durán LV, Renovato J, Contreras JC, Rodríguez R, Aguilar CN (2011) Catalytical properties of free and immobilized Aspergillus niger Tannase. Enzyme Res 2011, Article ID 768183:1–6. https://doi.org/10.4061/2011/7681832011:768183

    Article  Google Scholar 

  • Ganga PS, Nandy SC, Santappa M (1977) Effect of environmental factors on the production of fungal tannase. Leather Sci 24:8–16

    CAS  Google Scholar 

  • Gauri SS, Mandal SM, Atta S, Dey S, Pati BR (2012) Novel route of tannic acid biotransformation and their effect on major biopolymer synthesis in Azotobacter sp. SSB81. J Appl Microbiol 114:84–95

    Article  CAS  PubMed  Google Scholar 

  • Goel G, Puniya AK, Singh K (2007) Phenotypic characterization of tannin-protein complex degrading bacteria from faeces of goat. Small Rumin Res 69:217–220

    Article  Google Scholar 

  • Goel G, Kumar A, Beniwal V, Raghav M, Puniya AK, Singh K (2011) Degradation of tannic acid and purification and characterization of tannase from Enterococcus faecalis. Int Biodeterior Biodegrad 65(7):1061–1065

    Article  CAS  Google Scholar 

  • Gomez MAM, Rodrıguez LV, Ramos EL et al (2009) A novel tannase from the xerophilic fungus Aspergillus niger GH1. J Microbiol Biotechnol 19(9):987–996

    Article  CAS  Google Scholar 

  • Goncalves HB, Riul AJ, Quiapim AC, Jorge JA, Guimaraes LHS (2012) Characterization of a thermostable extracellular tannase produced under submerged fermentation by Aspergillus ochraceus. Electron J Biotechnol 15:1–11

    Google Scholar 

  • Gowdhaman D, Sugumaran KR, Ponnusami V (2012) Optimization of lactic acid production from tea waste by Lactobacillus plantarum MTCC 6161in solid state fermentation by central composite design. Int J ChemTech Res 4(1):143–148

    CAS  Google Scholar 

  • Gupta K, Gaumat S, Mishra K (2012) Studies on phyto-genotoxic assessment of tannery effluent and chromium on Allium cepa. J Environ Biol 33(3):557–563

    CAS  PubMed  Google Scholar 

  • Guzman-Lopez O, Loera O, Parada JL, Castillo-Morales A, Martinez-Ramirez C, Augur C, Gaime-Perraud I, Saucedo-Castaneda G (2009) Microcultures of lactic acid bacteria: characterization and selection of strains, optimization of nutrients and gallic acid concentration. J Ind Microbiol Biotechnol 36:11–20

    Article  CAS  PubMed  Google Scholar 

  • Hadi TA, Banerjee R, Bhattarcharyya BC (1994) Optimization of tannase biosynthesis by a newly isolated Rhizopus oryzae. Bioprocess Eng 11:239–243

    Article  CAS  Google Scholar 

  • Haslam E, Stangroom JE (1966) The esterase and depsidase activities of tannase. Biochem J 99(1):28–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatamoto O, Watari T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175:215–221

    Article  CAS  PubMed  Google Scholar 

  • Hsu CL, Lo WH, Yen GC (2007) Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes fas and mitochondrial-mediated pathway. J Agric Food Chem 55:7359–7365

    Article  CAS  PubMed  Google Scholar 

  • Iibuchi S, Minoda Y, Yamada K (1967) Studies on tannin acylhydrolase of microorganisms. Part II. A new method determining the enzyme activity using the change of ultra violet absorption. Agric Biol Chem 31:513–518

    CAS  Google Scholar 

  • Ikeda Y, Takahashi E, Yokogawa K, Yoshimura Y (1972) Studies on microbial production of gallic acid from tannins (I) screening for microorganisms producing gallic acid from Chinese and Tara tannins. J Ferment Technol 50:361–370

    CAS  Google Scholar 

  • Iqbal H, Kapoor A (2012) Culture conditions for the production of tannase from Trichoderma harzianum MTCC 10841. Int J Sci Technol 1(10):569–573

    Google Scholar 

  • Islam BI, Musa AE, Ibrahim EH, Sharafa SAA, Elfaki BM (2014) Evaluation and characterization of tannery wastewater. J For Prod Ind 3:141–150

    Google Scholar 

  • Iwamoto K, Tsurutab H, Nishitainia Y, Osawa R (2008) Identification and cloning of a gene encoding tannase (tannin acyl hydrolase) from Lactobacillus plantarum ATCC 14917. Syst Appl Microbiol 31:269–277

    Article  CAS  PubMed  Google Scholar 

  • Jana A, Maity C, Halder SK, Das A, Pati BR, Mondal KC, Das MPK (2013) Structural characterization of thermostable, solvent tolerant, cytosafe tannase from Bacillus subtilis PAB2. Biochem Eng J 77:161–170

    Article  CAS  Google Scholar 

  • Jana A, Halder SK, Banerjee A, Paul T, Pati BR, Mondal KC, Mohapatra PKD (2014) Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement. Bioresour Technol 157:327–340

    Article  CAS  PubMed  Google Scholar 

  • Johannes TW, Zhao H (2006) Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 9:261–267

    Article  CAS  PubMed  Google Scholar 

  • Kachouri F, Hamdi M (2004) Enhancement of polyphenols in olive oil by contact with fermented olive mill wastewater by Lactobacillus plantarum. Process Biochem 39:841–845

    Article  CAS  Google Scholar 

  • Kannan N, Aravindan R, Viruthagiri T (2011) Effect of culture conditions and kinetic studies on extracellular tannase production by Lactobacillus plantarum MTCC 1407. Ind J Biotechnol 10:321–328

    CAS  Google Scholar 

  • Kar B, Banerjee R (2000) Biosynthesis of tannin acyl hydrolase from tannin rich residue under different fermentation conditions. J Ind Microbiol Biotechnol 25:29–38

    Article  CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (1999) Microbial production of gallic acid by modified solid state fermentation. J Ind Microbiol Biotechnol 23:173–177

    Article  CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (2002) Optimization of physicochemical parameters of gallic acid production by evolutionary operation-factorial design technique. Process Biochem 37:1395–1401

    Article  CAS  Google Scholar 

  • Kasieczka-Burnecka M, Kuc K, Kalinowska H, Knap M, Turkiewicz M (2007) Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. Appl Microbiol Biotechnol 77:77–89

    Article  CAS  PubMed  Google Scholar 

  • Knudson L (1913) Tannic acid fermentation. J Biol Chem 14:159–184

    CAS  Google Scholar 

  • Kostinek M, Specht I, Edward VA, Pinto C, Egounlety M, Sossa C, Mbugua S, Dortu C, Thonart P, Taljaard L (2007) Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures. Int J Food Microbiol 114:342–351

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni A, Patil P, Kininge P (2012) Tannase production from Aspergillus oryzae NCIM 1032 using mixture of Jamun (Syzigium cumini) and Babul (Acacia nilotica) stem barks under solid state fermentation. Int J Eng Sci Technol 4(10):4321–4330

    Google Scholar 

  • Kumar RA, Gunasekaran P, Lakshmanan M (1999) Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. J Basic Microbiol 39:161–168

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Sharma J, Singh R (2007) Production of tannase from Aspergillus ruber under solid state fermentation using jamun (Syzygium cumini) leaves. Microbiol Res 162:384–390

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Beniwal B et al (2015) Biochemical characterization of immobilized tannase from Aspergillus awamori. Biocatal Agric Biotechnol 4(3):398–403

    Article  Google Scholar 

  • Kumar M, Singh A, Beniwal V, Salar RK (2016) Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach. AMB Expr 6:46

    Article  CAS  Google Scholar 

  • Kuppusamy M, Viruthagiri T, Arun Kumar C (2014) Statistical optimization of process parameters for production of tannase by Aspergillus flavus under submerged fermentation. 3 Biotech 4:159–166

    Google Scholar 

  • Lekha PK, Lonsane BK (1994) Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations. Process Biochem 29:497–503

    Article  CAS  Google Scholar 

  • Lewis JA, Starkey RL (1969) Decomposition of plant tannins by some soil microorganism. Soil Sci 107(4):235–240

    Article  CAS  Google Scholar 

  • Li R, Fu G, Liu C, McClements DJ, Wan Y, Wang S, Liu T (2018) Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. Int J Biol Macromol 114:1134–1143

    Article  CAS  PubMed  Google Scholar 

  • Lima JS, Cabrera MP, Motta CMS, Converti A, Carvalho LB Jr (2017) Hydrolysis of tannins by tannase immobilized onto magnetic diatomaceous earth nanoparticles coated with polyaniline. Food Res Int 810:470–476

    Google Scholar 

  • Liu TP, Brandao Costa RM, Vasconcelos Freitas DJ, Oliveira Nacimento C, Souza Motta CM, Bezerra RP, Nunes Herculano P, Porto AL (2016) Tannase from Aspergillus melleus improves the antioxidant activity of green tea: purification and biochemical characterisation. Int J Food Sci Technol 52:652–661. https://doi.org/10.1111/ijfs.13318

    Article  CAS  Google Scholar 

  • Lofrano G, Aydin E, Russo F, Guida M, Belgiorno V, Meric S (2008) Characterization, fluxes and toxicity of leather tanning bath chemicals in a large tanning district area (IT). Water Air Soil Pollut 8:529–542

    Article  CAS  Google Scholar 

  • Lofrano G, Meric S, Zengin GE, Orhon D (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461–462:265–281

    Article  CAS  PubMed  Google Scholar 

  • Lokeshwari N (2016) Utilization of natural tannins from Anacardium occidentales testa for producing the industrially important gallic acid through submerged fermentation. W J Pharma Res 5(8):861–864

    Google Scholar 

  • Lokeswari N (2010) Production of tannase through submerged fermentation of tannin- containing cashew husk by Aspergillus oryzae. Rasayan J Chem 3:32–37

    CAS  Google Scholar 

  • Lokeswari N, Jayaraju K (2007) Optimization of gallic acid production from Terminalia Chebula by Aspergillus niger. E-J Chem 4:287–293

    Article  CAS  Google Scholar 

  • Lopez-Rios GF (1984) Fitoquímica, 1st edn. Universidad Autónoma de Chapingo, Estado de México, p 13

    Google Scholar 

  • Mahendran B, Raman N, Kim DJ (2006) Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase. Appl Microbiol Biotechnol 70:444–450

    Article  CAS  PubMed  Google Scholar 

  • Malgireddy NR, Nimma LNR (2015) Optimal conditions for production of tannase from newly isolated Aspergillus terreus under solid state fermentation. Eu J Biotechnol Biosci 3(2):56–64

    Google Scholar 

  • Mandal S, Ghosh K (2013) Isolation of tannase-producing microbiota from the gastrointestinal tracts of some freshwater fish. J Appl Ichthyol 29:145–153

    Article  CAS  Google Scholar 

  • Manjit AY, Aggarwal NK, Kumar K, Kumar A (2008) Tannase production by Aspergillus fumigatus MA under solid-state fermentation. World J Microbiol Biotechnol 24:3023–3030

    Article  CAS  Google Scholar 

  • Mingshu LI, Kai Y, Qiang H, Dongying J (2006) Biodegradation of gallotannins and ellagitannins. J Basic Microbiol 46(1):68–84

    Article  CAS  Google Scholar 

  • Misro SK, Kumar MR, Banerjee R, Bhattacharyya BC (1997) Production of gallic acid by immobilization of Rhizopus oryzae. Bioprocess Eng 16:257–260

    Article  CAS  Google Scholar 

  • Mohan SK, Viruthagiri T, Arun Kumar C (2014) Statistical optimization of process parameters for the production of tannase by Aspergillus flavus under submerged fermentation. 3 Biotech 4(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Mondal KC, Banerjee R, Pati BR (2000) Tannase production by Bacillus licheniformis. Biotechnol Lett 20:767–769

    Article  Google Scholar 

  • Mondal KC, Banerjee D, Banerjee R, Pati BR (2001) Production and characterization of tannase from Bacillus cereus KBR 9. J Gen Appl Microbiol 47:263–267

    Article  CAS  PubMed  Google Scholar 

  • Muhammad NA, Hamid M, Ikram-Ul-Haq (2016) Production and characterization of tannase from a newly isolated Bacillus Subtilis. Pak J Bot 48(3):1263–1271

    Google Scholar 

  • Mukherjee G, Banerjee R (2003) Production of gallic acid. Biotechnological routes (part 1). Chim Oggi 21:59–62

    CAS  Google Scholar 

  • Mukherjee G, Banerjee R (2004) Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus. J Basic Microbiol 44:42–48

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee G, Banerjee R (2006) Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus. World J Microbiol Biotechnol 22:207–212

    Article  CAS  Google Scholar 

  • Murugan K, Saravanababu S, Arunachalam M (2007) Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process. Bioresour Technol 98:946–949

    Article  CAS  PubMed  Google Scholar 

  • Muslim SN, Mahammed AN, Musafer HK et al (2015) Detection of the optimal conditions for tannase productivity and activity by Erwinia Carotovora. J Medical Bioeng 4(3):198–205

    CAS  Google Scholar 

  • Mwinyihija M (2010) Main pollutants and environmental impacts of the tanning industry. In: Ecotoxicological diagnosis in the Tanning Industry. Springer, New York, NY pp 17–35

  • Naidu RB, Saisubramanian N, Sivasubramanian S, Selvakumar D, Janardhan S, Puvanakrishnan R (2008) Optimization of tannase production from Aspergillus foetidus using statistical design methods. Cur Tre Biotechnol Pharm 2:523–530

    CAS  Google Scholar 

  • Nandini KE, Apoorva G, Krishna SS (2013) The suitability of natural tannins from food and agricultural residues (FAR) for producing industrially important tannase and gallic acid through microbial fermentation. Int J Agric Food Sci Technol 4(10):999–1010

    Google Scholar 

  • Nandini S, Nandini KE, Krishna Sundari S (2014) Food and agriculture residue (FAR): a potential substrate for tannase and gallic acid production using competent microbes. J Biopro Biotechn 5(1):1

    Google Scholar 

  • Natarajan K, Rajendran A (2012) Evaluation and optimization of food-grade tannin acyl hydrolase production by a probioticion by a probiotic Lactobacillus plantarum strain inn in submerged and solid state fermentation. Food Bioprod Process 90(4):780–792

    Article  CAS  Google Scholar 

  • Nishitani Y, Osawa R (2003) A novel colorimetric method to quantify tannase activity of viable bacteria. J Microbiol Methods 54:281–284

    Article  CAS  PubMed  Google Scholar 

  • Nishitani Y, Sasaki E, Fujisawa T, Osawa R (2004) Genotypic analyses of lactobacilli with a range of tannase activities isolated from human feces and fermented foods. Sys App Microbiol 27:109–117

    Article  CAS  Google Scholar 

  • Noguchi N, Ohashi T, Shiratori T (2007) Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. J Gastroenterol 42:346–351

    Article  CAS  PubMed  Google Scholar 

  • Ong CB, Annuar MSM (2018) Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behaviour. Prep Biochem Biotehnol 48(2):181–187

    Article  CAS  Google Scholar 

  • Osawa R, Fujisawa T, Sly LI (1995) Streptococcus gallolyticus sp. nov., gallate degrading organisms formerly assigned to Streptococcus bovis. Syst Appl Microbiol 18:74–78

    Article  Google Scholar 

  • Osawa R, Kuroiso K, Goto S, Shimizu A (2000) Isolation of tannin-degrading Lactobacilli from humans and fermented foods. Appl Environ Microbiol 66:3093–3097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paaver U, Matto V, Raal A (2010) Total tannin content in distinct Quercus robur L. galls. J Med Plant Res 4:702–705

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues I: Sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  • Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadivel K (2009) Optimization of various culture media for tannase production in submerged fermentation by Aspergillus flavus. Adv Biol Res 3:34–39

    CAS  Google Scholar 

  • Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadivel K (2010) Manipulation of fermentation conditions on production of tannase from agricultural by-products with Aspergillus oryzae. Afr J Microbiol Res 4(13):1440–1445

    CAS  Google Scholar 

  • Pepi M, Lampariello LR, Altieri R, Esposito A, Perra G, Renzi M, Lobianco A, Feola A, Gasperini S, Focardi SE (2010) Tannic acid degradation by bacterial strains Serratia spp. and Pantoea sp isolated from olive mill waste mixtures. Int Biodeterior Biodegrad 64:73–80

    Article  CAS  Google Scholar 

  • Pinto GA, Leite SGF, Terzi SC, Couri S (2001) Selection of tannase producing Aspergillus niger strains. Braz J Microbiol 32:24–26

    Article  CAS  Google Scholar 

  • Pottevin M (1900) Compt Rend 131:1215–1217

    CAS  Google Scholar 

  • Pourrat H, Regerat F, Pourrat A, Daniel J (1985) Production of gallic acid from tara by a strain of Aspergillus niger. J Ferment Technol 63:401–403

    CAS  Google Scholar 

  • Pourrat H, Regerat F, Morvan P, Pourrat A (1987) Microbiological production of gallic acid. Biotechnol Lett 9:731–734

    Article  CAS  Google Scholar 

  • Prasad D, Gupta RK, Mathangi G, Kamini NR, Gowthaman MK (2012) Advances in production and characteristic features of microbial tannases: an overview. Curr Trends Biotechnol Pharm 6:119–144

    Google Scholar 

  • Purohit JS, Dutta JR, Nanda RK, Banerjee R (2006) Strain improvement for tannase production from co-culture of Aspergillus foetidus and Rhizopus oryzae. Bioresour Technol 97:795–801

    Article  CAS  PubMed  Google Scholar 

  • Qi FH, Jing TZ, Wang ZX, Zhan YG (2009) Fungal endophytes from Acer ginnala maxim: isolation, identification and their yield of gallic acid. Lett Appl Microbiol 49:98–104

    Article  CAS  PubMed  Google Scholar 

  • Raghuwanshi S, Dutt K, Gupta P, Misra S, Saxena RK (2011) Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis. J Biosci Bioeng 111:635–640

    Article  CAS  PubMed  Google Scholar 

  • Rani UM, Appaiah AKA (2012) Gluconacetobacter hansenii UAC09-mediated transformation of polyphenols and pectin of coffee cherry husk extract. Food Chem 130:243–247

    Article  CAS  Google Scholar 

  • Rao DG (2010) Introduction to biochemical engineering, 2nd edn. Tata McGraw-Hill Education, New Delhi

    Google Scholar 

  • Rao RS, Kumar CG, Prakasham RS, Hobbs PJ (2008) The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnol J 3(4):510–523

    Article  CAS  PubMed  Google Scholar 

  • Reddy MN, Kumar GC (2011) Production of tannase by isolated Aspergillus terrus under solid state fermentation. Int J Pharm Res Devel 3(2):41–49

    Google Scholar 

  • Reddy BS, Rathod V (2012) Gallic acid production & tannase activity of Penicillium purpurogenum employing agro based wastes through solid state fermentation: influence of pH and temperature. Asian J Biochem Pharm Res 2:59–62

    Google Scholar 

  • Regerat F, Pourrat H, Pourrat A (1989) Hydrolysis by fermentation of tannins from gall nuts. Jalca 84:323–328

    CAS  Google Scholar 

  • Rodriguez H, de las Rivas B, Gomez-Cordoves C, Munoz R (2008) Characteriztaion of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748. Int J Food Microbiol 121:92–98

    Article  CAS  PubMed  Google Scholar 

  • Rodrıguez-Duran LV et al (2011) Novel strategies for upstream and downstream processing of tannin acyl hydrolase. Enzyme Res 2011:1–20

    Article  CAS  Google Scholar 

  • Roy S, Parvin R, Ghosh S, Bhattacharya S, Maity S, Banerjee D (2018) Occurrence of a novel tannase (tan B LP ) in endophytic Streptomyces sp. AL1L from the leaf of Ailanthus excelsa Roxb 3. Biotech 8(1):33

    Google Scholar 

  • Ruiz-Aguilar GML, Rios-Leal E, Tomasini-Campocosio A, Veloz-Rodriguez R, BarajasAceves M, Rodriguez-Vazquez R (2004) Effect of culture parameters on the degradation of a hydrolyzable tannin extracted from cascalote by Aspergillus niger. Bull Environ Contam Toxicol 73:45–52

    Article  CAS  PubMed  Google Scholar 

  • Sabu A, Pandey A, Jaafar Daud M, Szakacs G (2005) Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour Technol 96:1223–1228

    Article  CAS  PubMed  Google Scholar 

  • Sahu RK, Katiyar S, Tiwari J, Kisku GC (2007) Assessment of drain water receiving effluent from tanneries and its impact on soil and plants with particular emphasis on bioaccumulation of heavy metals. J Environ Biol 28(3):685–690

    CAS  PubMed  Google Scholar 

  • Sarıozlu NY, Kıvanc M (2009) Isolation of gallic acid-producing microorganisms and their use in the production of gallic acid from gall nuts and sumac. Afr J Biotechnol 8(6):1110–1115

    Google Scholar 

  • Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E (2005) Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin- rich acorns. Syst Appl Microbiol 28:358–365

    Article  PubMed  Google Scholar 

  • Schilling K, Ulrike B, Helmut K, Zessner M (2012) Adapting the Austrian edict on wastewater emissions for tanneries as consequence of foam formation on surface waters. Environ Sci Pol 23:68–73

    Article  CAS  Google Scholar 

  • Selwal MK, Yadav A, Selwal KK, Aggarwal NK, Gupta R, Gautam SK (2010) Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J Microbiol Biotechnol 26:599–605

    Article  CAS  Google Scholar 

  • Selwal MK, Yadav A, Selwal KK, Aggarwal NK, Gupta R, Gautam SK (2011) Tannase production by Penicillium atramentosum KM under SSF and its applications in wine clarification and tea cream solubilization. Braz J Microbiol 42:374–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sena AR, Leite TCC, Nascimento TCES, Silva AC, Souza CS, Vaz AFM, Moreira KA, Assis SA (2018) Kinetic, thermodynamic parameters and in vitro digestion of tannase from Aspergillus tamarii URM 7115. Chem Eng Commun. https://doi.org/10.1080/00986445.2018.1452201

  • Seth M, Chand S (2000) Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori- optimisation of process parameters. Process Biochem 36:39–44

    Article  CAS  Google Scholar 

  • Sharma S, Gupta MN (2003) Synthesis of antioxidant propyl gallate using tannase from Aspergillus niger van Teighem in non aqueous media. Bioorg Med Chem Lett 13:395–397

    Article  CAS  PubMed  Google Scholar 

  • Sharma KP, John PJ (2011) Purification and characterization of tannase and tannase gene from Enterobacter sp. Process Biochem 46:240–244

    Article  CAS  Google Scholar 

  • Sharma S, Bhat TK, Dawra RK (1999) Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. W J Microbiol Biotechnol 15(6):673–677

    Article  CAS  Google Scholar 

  • Sharma S, Bhat TK, Gupta MN (2002) Bioaffinity immobilization of tannase from Aspergillus niger on concanavalin A–Sepharose CL-4B. Biotechnol Appl Biochem 35:165–169

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Agarwal L, Saxena RK (2007) Statistical optimization for tannase production from Aspergillus niger under submerged fermentation. Indian J Microbiol 47:132–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Agarwal L, Saxena RK (2008) Purification, immobilization and characterization of tannase from Penicillium variable. Bioresour Technol 99(7):2544–2551

    Article  CAS  PubMed  Google Scholar 

  • Sharma NK, Beniwal V, Kumar N, Kumar S, Pathera AK, Ray A (2014) Production of tannase under solid-state fermentation and its application in detannification of guava juice. Prep Biochem Biotechnol 44(3):281–290

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Mukhopadhyay M (2016) Lipase-catalyzed glycerolysis of olive oil in organic solvent medium: optimization using response surface methodology. Korean J Chem Eng 33(4):1247–1254

    Article  CAS  Google Scholar 

  • Singh B, Bhat TK, Sharma OP (2001) Biodegradation of tannic acid in an in vitro ruminal system. Livest Prod Sci 68(2–3):259–262

    Article  Google Scholar 

  • Sivashanmugam K, Jayaraman G (2013) Production and partial purification of extracellular tannase by Klebsiella pneumonia MTCC 7162 isolated from tannery effluent. Afr J Biotechnol 10:1364–1374

    Google Scholar 

  • Skene IK, Brooker JD (1995) Characterization of tannin acyl hydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe 1:321–327

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Williams CJ, Edyvean RGJ (2004) Treatment of tannery wastewater by chemical coagulation. Desalination 164:249–259

    Article  CAS  Google Scholar 

  • Srivastava A, Kar R (2009) Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Braz J Microbiol 40(4):782–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su E, Xia T, Gao L, Dai Q, Zhang Z (2009) Immobilization and characterization of tannase and its haze-removing. Food Sci Technol Int 15(6):545–552

    Article  CAS  Google Scholar 

  • Subbulaxmi S, Murty VR (2016) Process optimization for tannase production by Bacillus gottheilii M2S2 on inert polyurethane foam support. Biocatal Agric Biotechnol 7:48–55

    Article  Google Scholar 

  • Suseela RG, Nandy SC (1985) Decomposition of tannic acid and gallic acid by Penicillium chrysogenum. Leath Sci 32:278–280

    Google Scholar 

  • Taguchi G (1986) Introduction to quality engineering. UNIPUB/Kraus International Publications, White Plains

    Google Scholar 

  • Tahmourespour A, Tabatabaee N, Khalkhali H, Amini I (2016) Tannic acid degradation by Klebsiella strains isolated from goat feces. Iranian J Microbiol 8(1):14–20

    Google Scholar 

  • Tanash AB, Sherief AA, Nour A (2011) Catalytic properties of immobilized tannase produced from Aspergillus aculeatus compared with the free enzyme. Braz J Chem Eng 28(3):381–391

    Article  Google Scholar 

  • Thakur N, Nath AK (2017a) Isolation of tannase producing bacteria from sheep excreta. Indian J Small Ruminants 23(2):264–266

    Article  Google Scholar 

  • Thakur N, Nath AK (2017b) Detection and production of gallic acid from novel fungal strain- Penicillium crustosum AN3 KJ820682. Curr Trends Biotechnol Pharm 11(1):60–66

    CAS  Google Scholar 

  • Tomas-Cortazar J, Plaza-Vinuesa L, de las Rivas B, Lavín JL, Barriales D, Abecia L, Mancheño JM, Aransay AM, Muñoz R, Anguita J, Rodríguez H (2018) Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. Microb Cell Fact 17:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevino-Cueto B, Luis M, Contreras-Esquivel JC, Rodríguez R, Aguilera A, Aguilar CN (2007) Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant (Larrea tridentata Cov.). Bioresour Technol 98:721–724

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AD, Sharma ABL (2016) Study on tannase producing Bacillus megaterium isolated from tannery effluent. Int J Adv Res Biol Sci 3(7):28–35

    CAS  Google Scholar 

  • Van de Lagemaat J, Pyle DL (2001) Solid-state fermentation and bioremediation: development of a continuous process for the production of fungal tannase. Chem Eng J 84:115–123

    Article  Google Scholar 

  • Van de Lagemaat J, Pyle DL (2005) Modelling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solid-state fermentation for tannase production. Process Biochem 40(5):1773–1782

    Article  CAS  Google Scholar 

  • Vaquero I, Marcobal A, Munoz R (2004) Tannase activity by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 96:199–204

    Article  CAS  PubMed  Google Scholar 

  • Varadharajan V, Vadivel SS, Ramaswamy A, Sundharamurthy V, Chandrasekar P (2015) Modeling and verification of process parameters for the production of tannase by Aspergillus oryzae under submerged fermentation using agrowastes. Biotechnol App Biochem 64(1):100–109

    Article  CAS  Google Scholar 

  • Ventura J, Belmares R, Aguilera-Carbo A, Gutirrez-Sanchez G, Rodriguez-Herrea R, Aguilar CN (2008) Fungal biodegrdation of tannins from Creosote bush (Larrea tridentata) and Tar bush (Fluorensia cernua) for gallic acid and ellagic acid production. Food Technol Biotechnol 46:213–217

    CAS  Google Scholar 

  • Verma T, Ramteke PW, Garg SK (2008) Quality assessment of treated tannery wastewater with special emphasis on pathogenic E. coli detection through serotyping. Environ Monit Assess 145(1–3):243–249

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Dong F, Chen M, Zhu J, Tan J, Fu X et al. (2016) Advances in recycling and utilization of agricultural wastes in China: based on environmental risk, crucial pathways, influencing factors, policy mechanism. In Procedia environmental sciences: Vol. 31. The tenth international conference on waste management and technology (ICWMT) (pp. 12–17)

  • Willke T, Worlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    Article  CAS  PubMed  Google Scholar 

  • Wilson PA, Rojan PJ, Kumar P, Sabu T (2009) Tannin acyl hydrolase production by Citrobacter sp. isolated from tannin rich environment, using Tamarindus indica seed powder. J Appl Sci Environ Manage 13:95–97

    Google Scholar 

  • Wu C, Xu C, Ni H, Yang Q, Cai H, Xiao A (2016) Preparation and characterization of tannase immobilized onto carboxyl-functionalized superparamagnetic ferroferric oxide nanoparticles. Bioresour Technol 205:67–74

    Article  CAS  PubMed  Google Scholar 

  • Xiao A, Huang Y, Ni H, Cai H, Yang Q (2015) Statistical optimization for tannase production by Aspergillus tubingensis in solid-state fermentation using tea stalks. Elect J Biotechnol 18(3):143–147

    Article  CAS  Google Scholar 

  • Yamada H, Adach O, Watanab M, Sato N (1968) Studies on fungal tannase:formation, purification and catalytic properties of tannase of Aspergillus flavus. Agric Biol Chem 32:1070–1078

    CAS  Google Scholar 

  • Yao J, Chen QL, Shen AX, Cao W, Liu YH (2013) A novel feruloyl esterase from a soil metagenomic library with tannase activity. J Mol Catal B Enzym 95:55–61

    Article  CAS  Google Scholar 

  • Yao J, Chen Q, Zhong G, Cao W, Yu A, Liu Y (2014) Immobilization and characterization of tannase from a metagenomic library and its use for removal of tannins from green tea infusion. J Microbiol Biotechnol 24(1):80–86

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li Y, Wang C, Dan W (2004) Immobilization of Aspergillus niger tannase by microencapsulation and its kinetics and characteristics. Biotechnol Appl Biochem 40:151–155

    Article  CAS  PubMed  Google Scholar 

  • Zarate AP, Cruz MA et al (2015) Gallic acid production under anaerobic submerged fermentation by two bacilli strains. Microb Cell Factories 14:209

    Article  CAS  Google Scholar 

  • Zeida M, Wieser M, Yoshida T, Sugio T, Nagasawa T (1998) Purification and characterization of gallic acid decarboxylase from Pantoea agglomerans T71. Appl Env Microbiol 64:4743–4747

    CAS  Google Scholar 

  • Zhong X, Peng L, Zheng S, Sun Z, Ren Y, Dong M, Xu A (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif 36(2):165–169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, S., Mukherjee, G. & Singh, A.K. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review. Int Microbiol 21, 175–195 (2018). https://doi.org/10.1007/s10123-018-0027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-018-0027-9

Keywords

Navigation