Skip to main content

Fungal Tannase: Recent Advances and Industrial Applications

  • Chapter
  • First Online:
Developments in Fungal Biology and Applied Mycology

Abstract

Tannin acyl hydrolase (E.C.3.1.1.20) universally known as tannase is an inducible enzyme that predominantly acts on tannins. Tannins have been documented as high molecular weight polyphenolic compounds possessing molecular weight in the range (500–3000 kDa). Tannins are the second most abundant polyphenolic compounds existing in nature after lignin. Tannins are water-soluble secondary metabolites existing in abundance in plants. Apparently, tannins exist in plants as the fourth most bountiful constituents behind cellulose, hemicellulose, and lignin. Tannins possess acrid properties and have the inherent capability of binding with proteins, cellulose, gelatin, and pectin thereby forming insoluble complexes. Tannases derived from microbial sources have enormous applications in various industries. This tremendous biocatalytic potential of tannase is attributed to their higher stability and feasibility. Tannases have a vast range of applications in various industrial bioprocesses ranging from food, feed to chemical as well as pharma sector. Furthermore, tannery effluents are loaded with surplus amount of tannins, predominantly polyphenols, which are life-threatening pollutants and pose severe environmental and health hazards. As a matter of fact, tannases can be substantially utilized for degrading the tannins that predominantly exist in the tannery effluents, thus offering a much cheaper treatment for the eviction of these compounds. The enzyme also finds significant utilization in cosmetic industries to so as to lessen the extensive turbidity of plant extracts. Tannase can also be predominantly used for high-grade leather tannins preparation in the leather industry. The present chapter is an attempt to emphasize on microbial sources, substrates for maximal tannase production, factors governing tannase production, mechanism of action, purification, immobilization, inhibitors as well as widespread applications of tannases. The advancements in molecular tools and techniques have enabled a better understanding of tannase structure, underlying mechanism of its action as well as the more precise understanding of various process parameters governing tannase production. Over the years, tannases have witnessed a significant rise in their utilization in commercial sector; thus, there is always an opportunity for researchers to search out novel tannases with better and improved characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Nabey MA, Sherif AA, El-Tanash AB, Mankarios AT (1999) Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. J Appl Microbiol 87:108–114

    Google Scholar 

  • Aguilar CN, Augur C, Torres FE, Gonzalez GV (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    CAS  PubMed  Google Scholar 

  • Aguilar CN, Rodriguez R, Gutierrez-Sanchez G, Augur C, Favela-Torres E, Prado- Barragan LA, Ramirez-Coronel A, Contreras-Esquivel JC (2007) Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76:47–59

    Google Scholar 

  • Aguilera-Carbo A, Augur C, Prado-Barragan LA, Favela-Torres E, Aguilar CN (2008) Microbial production of ellagic acid and biodegradation of ellagitannins. Appl Microbiol Biotechnol 78:189–199

    CAS  PubMed  Google Scholar 

  • Ahmed ME, Rahman A (2014) Detection of the perfect condition to produce the tannase from Aspergillus niger at different medium. J Babylon Univ Pure Appl Sci 22:1363–1371

    Google Scholar 

  • Aoki K, Shinke R, Nishira H (1976a) Purification and some properties of yeast tannase. Agric Biol Chem 40:79–85

    CAS  Google Scholar 

  • Aoki K, Shinke R, Nishira H (1976b) Chemical composition and molecular weight of yeast tannase. Agric Biol Chem 40:297–302

    CAS  Google Scholar 

  • Bagga J, Pramanik SK, Pandey V (2015) Production and purification of tannase from Aspergillus aculeatus using plant derived raw tannin. Int J Sci Eng Technol 4:50–55

    CAS  Google Scholar 

  • Bajpai B, Patil S (1997) Introduction of tannin acyl hydrolase (EC 3.1.1.20) activity in some members of fungi imperfecti. Enzyme Microb Technol 20:612–614

    CAS  Google Scholar 

  • Banerjee D, Mondal KC, Pati BR (2001) Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF 9. J Basic Microbiol 41:313–318

    CAS  PubMed  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of a tannase from Aspergillus niger LCF8. J Ferment Bioeng 77:320–323

    CAS  Google Scholar 

  • Battestin V, Macedo GA (2007) Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electron J Biotechnol 10:191–199

    CAS  Google Scholar 

  • Beena PS, Soorej MB, Elyas KK, Sarita GB, Chandrasekaran M (2010) Acidophilic tannase from marine Aspergillus awamori BTMFW032. J Microbiol Biotechnol 20:1403–1414

    CAS  PubMed  Google Scholar 

  • Belmares R, Contreras-Esquivel JC, Rodriguez-Herrera R, Coronel AR, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. Lebensmittel-Wissenschaft Technol 37:857–64

    CAS  Google Scholar 

  • Belur PD, Mugeraya G (2011) Microbial production of tannase: state of the art. Res J Microbiol 6:25–40

    CAS  Google Scholar 

  • Belur PD, Goud R, Goudar DC (2012) Optimization of culture medium for novel cell associated tannase production from Bacillus massiliensis using response surface methodology. J Microbiol Biotechnol 22:199–206

    CAS  PubMed  Google Scholar 

  • Bhardwaj R, Bhat TK, Singh B (2003) Purification and characterization of tannin acyl hydrolase from A. niger MTCC-2425. J Basic Microbiol 43:449–461

    CAS  PubMed  Google Scholar 

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins-A current perspective. Biodegradation 9:343–357

    CAS  PubMed  Google Scholar 

  • Boadi DK, Neufeld RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb Technol 28:590–595

    CAS  PubMed  Google Scholar 

  • Boer E, Bode R, Mock HP, Piontek M, Kunze G (2009). Atan Ip-an extracellular tannase from the dimorphic yeast Arxula adeninivorans: molecular cloning of ATAN1 gene and characterization of the recombinant enzyme. Yeast 26:323–337

    Google Scholar 

  • Chhokar V, Sangwan M, Beniwal V, Nehra K, Nehra KS (2009) Effect of additives on the activity of tannase from Aspergillus awamori MTCC9299. Appl Biochem Biotechnol 9:8813–8817

    Google Scholar 

  • Chhokar V, Seema, Beniwal V, Salar RK, Nehra KS, Kumar A, Rana JS (2010) Purification and characterization of extracellular tannin acyl hydrolase from Aspergillus heteromorphus MTCC 8818. Biotechnol Bioprocess Eng 15:793–799

    Google Scholar 

  • Choi HJ, Song JH, Bhatt LR, Baek SH (2010) Anti-human rhinovirus activity of gallic acid possessing antioxidant capacity. Phytotherapy Res 24:1292–1296

    CAS  Google Scholar 

  • Costa A, Ribeiro W, Kato E, Monteiro R, Peralta R (2008) Production of tannase by Aspergillus tamarii in submerged cultures. Barazilian Archeives Biol Biotechnol 51:399–404

    CAS  Google Scholar 

  • Costa AM, Kadowaki MK, Minozzo MC, Souza CGM, Boer CG, Bracht A, Peralta RM (2012) Production, purification and characterization of tannase from Aspergillus tamarii. Afr J Biotech 11:391–398

    Google Scholar 

  • Deepa C, Lavanya B, Latha S (2015) Purification of tannase from Aspergillus niger under solid state fermentation. World J Pharm Pharm Sci 4:993–1001

    CAS  Google Scholar 

  • Deschamps AM, Otuk G, Lebault JM (1983) Production of tannase and degradation of chestnut tannins by bacteria. J Ferment Technol 61:55–59

    CAS  Google Scholar 

  • Farias GM, Gorbea C, Elkins JR, Griffin GJ (1994) Purification, characterization and substrate relationships of the tannase from Cryphonectria parasitica. Physiol Mol Plant Pathol 44:51–63

    CAS  Google Scholar 

  • Frutos P, Hervas G, Giraldez FJ, Mantecon AR (2004) Review: tannins and ruminant nutrition. Spanish J Agric Res 2:191–202

    Google Scholar 

  • Goncalves HB, Riul AJ, Terenzi HF, Jorge JA, Guimaraes LHS (2011) Extracellular tannase from Emericella nidulans showing hypertolerance to temperature and organic solvents. J Mol Catal B Enzym 71:29–35

    CAS  Google Scholar 

  • Hadi TA, Banerjee R, Bhattarcharyya BC (1994) Optimization of tannase biosynthesis by a newly isolated Rhizopus oryzae. Bioprocess Eng 11:239–243

    CAS  Google Scholar 

  • Hamdy HS (2008) Purification and characterisation of a newly isolated stable long-life tannase produced by F. subglutinans (Wollenweber and Reinking) Nelson et al. J Pharm Innovations 3:142–151

    Google Scholar 

  • Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175:215–221

    CAS  PubMed  Google Scholar 

  • Hota SK, Dutta JR, Banerjee R (2007) Immobilization of tannase from Rhizopus oryzae and its efficiency to produce gallic acid from tannin rich agro-residues. Indian J Biotechnol 6:200–204

    CAS  Google Scholar 

  • Kasieczka-Burnecka M, Kuc K, Kalinowska H, Knap M, Turkiewicz M (2007) Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl Microbiol Biotechnol 77:77–89

    CAS  PubMed  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (2002) Optimization of physicochemical parameters of gallic acid production by evolutionary operation-factorial design technique. Process Biochem 37:1395–1401

    CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (2003) Effect of additives on the behavioural properties of tannin acyl hydrolase. Process Biochem 38:1285–1293

    CAS  Google Scholar 

  • Knudson L (1913) Tannic acid fermentation. J Biol Chem 14:159–184

    CAS  Google Scholar 

  • Kuppusamy M, Thangavelu V, Kumar A, Chockalingam (2015) Kinetics and modeling of tannase production using Aspergillus foetidus in batch fermentation. Int J Pharm Pharm Sci 7:64–67

    Google Scholar 

  • Lal D, Divya Shrivastava D, Verma HN, Gardne JJ (2012) Production of Tannin Acyl Hydrolase (E.C. 3.1.1.20) from Aspergillus niger isolated from bark of Acacia nilotica. J Microbiol Biotechnol Res 4:566–572

    Google Scholar 

  • Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase. Adv Appl Microbiol 44:215–260

    CAS  PubMed  Google Scholar 

  • Lenin B, Lokeswari N, Reddy D (2015) Separation and optimization of phenolic component from Anacardium occidentales testa by solvent extraction method. World J Pharm Res 4:870–874

    Google Scholar 

  • Libuchi S, Minoda Y, Yamad K (1967) Studies on tannin acyl hydrolase of microorganisms. Part II. A new method determining the enzyme activity using the change of UV absorption. Agric Biol Chem 31:513–518

    Google Scholar 

  • Lokeshwari N (2016) Utilization of natural tannins from Anacardium occidentales testa for producing the industrially important gallic acid through submerged fermentation. World J Pharm Res 5(8):861–864

    Google Scholar 

  • Mahapatra K, Nanda RK, Bag SS, Banerjee R, Pandey A, Szakacs G (2005) Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochem 40:3251–3254

    CAS  Google Scholar 

  • Mahendran B, Raman N, Kim DJ (2006) Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase. Appl Microbiol Biotechnol 70:444–450

    CAS  PubMed  Google Scholar 

  • Manjit AY, Aggarwal NK, Kumar K, Kumar A (2008) Tannase production by Aspergillus fumigatus MA under solid-state fermentation. World J Microbiol Biotechnol 24:3023–3030

    CAS  Google Scholar 

  • Mata-Gomez M, Rodriguez LV, Ramos EL, Renovato J, Cruz-Hernandez MA, Rodriguez R, Contreras J, Aguilar CN (2009) A novel tannase from the xerophilic fungus Aspergillus niger GH1. J Microbiol Biotechnol 19:987–996

    PubMed  Google Scholar 

  • Mingshu L, Kai Y, Qiang H, Dongying J (2006) Biodegradation of gallotannins and elllagitannins. J Basic Microbiol 46:68–84

    Google Scholar 

  • Mondal KC, Banerjee D, Jana M, Pati BR (2001) Colorimetric assay method for determination of the tannin acyl hydrolase (EC 3.1.1.20) activity. Anal Biochem 295:168–171

    CAS  PubMed  Google Scholar 

  • Mosleh H, Naghiha A, Keshtkaran AN, Khajavi M (2014) Isolation and identification of tannin-degrading bacteria from native sheep and goat feces in Kohgiloye and Boyer-Ahmad Province. Int J Adv Biol Biomed Res 2:176–180

    CAS  Google Scholar 

  • Mukherjee G, Banerjee R (2003) Production of gallic acid. Biotechnological routes (Part 1). Chim Oggi 21:59–62

    CAS  Google Scholar 

  • Mukherjee G, Banerjee R, Rintu C (2006) Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus. World J Microbiol Biotechnol 22:207–212

    CAS  Google Scholar 

  • Murugan K, Al-Sohaibani Saleh A (2010) Biocompatibale removal of tannin and associated color from tannery effluent using the biomass and tannin acyl hydrolase (E.C.3.1.1.20) enzymes of mango industry solid waste isolate Aspergillus candidus MTCC 9628. Res J Microbiol 5(4):262–271

    CAS  Google Scholar 

  • Murugan K, Saravanababu S, Arunachalam M (2007) Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process. Biores Technol 98:946–949

    CAS  Google Scholar 

  • Naidu RB, Saisubramanian N, Sivasubramanian S, Selvakumar D, Janardhan S, Puvanakrishnan R (2008) Optimization of tannase production from Aspergillus foetidus using statistical design methods. Current Trends Biotechnol Pharm 2:523–530

    CAS  Google Scholar 

  • Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadivel K (2009) Optimization of various culture media for tannase production in submerged fermentation by Aspergillus flavus. Adv Biol Res 3:34–39

    CAS  Google Scholar 

  • Prasad L, Khan TH, Jahangir T, Sultana S (2006) Effect of gallic acid on renal biochemical alterations in male Wistar rats induced by ferric nitriloacetic acid. Hum Exp Toxicol 25:523–529

    CAS  PubMed  Google Scholar 

  • Ramirez-Coronel MA, Viniegra-Gonzalez G, Darvill A, Augur C (2003) A novel tannase from Aspergillus niger with β-glucosidase activity. Microbiology 149:2941–2946

    CAS  PubMed  Google Scholar 

  • Reddy BS, Rathod V (2012) Gallic acid production and tannase activity of Penicillium purpurogenum employing agro based wastes through solid state fermentation: influence of pH and temperature. Asian J Biochem Pharm Res 2:59–62

    Google Scholar 

  • Rodriguez H, de las Rivas B. Gomez-Cordoves C, Munoz R (2008) Characteriztaion of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748. Int J Food Microbiol 121:92–98

    Google Scholar 

  • Rout S, Banerjee R (2006) Production of tannase under mSSF and its application in fruit juice debittering. Indian J Biotechnol 5:346–350

    CAS  Google Scholar 

  • Sabu A, Kiran GS, Pandey A (2005) Purification and characterization of tannin acyl hydrolase from A. niger ATCC 16620. Food Technol Biotechnol 43:133–138

    CAS  Google Scholar 

  • Muslim SN, Mahammed AN, Musafer HK, A.L_Kadmy IMS, Shatha A, Muslim SN (2015) Detection of the optimal conditions for tannase productivity and activity by Erwinia Carotovora. J Med Bioeng 4(3):198–205

    Google Scholar 

  • Sanderson GW, Coggon P (1974) Green tea conversion using tannase and natural tea enzyme. U.S. Patent 3:812–266

    Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistr 30:3857–3883

    Google Scholar 

  • Selwal MK, Yadav A, Selwal KK, Aggarwal NK, Gupta R, Gautam SK (2010) Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J Microbiol Biotechnol 26:599–605

    CAS  Google Scholar 

  • Sharma S, Bhat TK, Dawra RK (2000) A spectrophotometric method for assay of tannase using Rhodonine. Anal Biochem 278:85–89

    Google Scholar 

  • Sharma S, Agarwal L, Saxena RK (2008) Purification, immobilization and characterization of tannase from Penicillium variable. Biores Technol 99:2544–2551

    CAS  Google Scholar 

  • Skene IK, Brooker JD (1995) Characterization of tannin acyl hydrolase in the ruminal bacterium Selenomonas ruminantium. Anaerobe 1:321–327

    CAS  PubMed  Google Scholar 

  • Srivastava R, Kar R (2009) Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Braz J Microbiol 40:782–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subbulaxmi S, Murty VR (2016) Process optimization for tannase production by Bacillus gottheilii M2S2 on inert polyurethane foam support. Biocatalaysis Agric Biotechnol 7:48–55

    Google Scholar 

  • Teighem V (1867) Sur la fermentation gallique. Comptes Rendus de I’Academie des Sciences (Paris) 65:1091–1094

    Google Scholar 

  • Yu X, Li Y, Wang C, Dan W (2004) Immobilization of Aspergillus niger tannase by microencapsulation and its kinetics and characteristics. Biotechnol Appl Biochem 40:151–155

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhiman, S., Mukherjee, G., Kumar, A., Mukherjee, P., Verekar, S.A., Deshmukh, S.K. (2017). Fungal Tannase: Recent Advances and Industrial Applications. In: Satyanarayana, T., Deshmukh, S., Johri, B. (eds) Developments in Fungal Biology and Applied Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4768-8_16

Download citation

Publish with us

Policies and ethics