Skip to main content

Advertisement

Log in

A Redox-responsive Prodrug Nanogel of TLR7/8 Agonist for Improved Cancer Immunotherapy

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The existence of tumor immunosuppressive microenvironment (TIME) is the major determinant for the poor efficacy of current tumor immunotherapy. Tumor-associated macrophages (TAMs) tend to become tumor-promoting M2-like phenotype and hinder immune response in solid tumors. Repolarization of TAMs from M2 to anti-tumor M1 phenotype is robust for remodeling the TIME. Herein, we developed a redox-responsive nanogel as the delivery system of Toll-like receptor 7 and 8 (TLR7/8) agonist (R848) prodrug for potent cancer immunotherapy. The nanogel (denoted as R848-Gel) was obtained by emulsion polymerization of HSEMA and R848 prodrug (R848-HSEMA), whose size was appropriate 100 nm. R848-Gel could be internalized by macrophages and dendritic cells in vitro, and effectively repolarized M2 into M1 macrophages and promoted the maturation of antigen-presenting cells. In vivo study indicated that the R848-Gel showed a stronger tumor inhibitory effect and no drastic body weight change compared with free drug. Immune cell analysis after the treatment indicated that R848-Gel was helpful to activating the TIME. In summary, this study provides a simple but effective vehicle for R848 to improve cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farkona, S.; Diamandis, E. P.; Blasutig, I. M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016, 14, 73.

    Article  Google Scholar 

  2. Harbeck, N.; Gnant, M. Breast cancer. Lancet 2017, 389, 1134–1150.

    Article  Google Scholar 

  3. Lippman, S. M.; Hawk, E. T. Cancer prevention: from 1727 to milestones of the past 100 years. Cancer Res. 2009, 69, 5269–5284.

    Article  CAS  Google Scholar 

  4. Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821.

    Article  CAS  Google Scholar 

  5. Kennedy, L. B.; Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 2020, 70, 86–104.

    Article  Google Scholar 

  6. Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 13, 175–196.

    Article  Google Scholar 

  7. Schoenfeld, J. D.; Hanna, G. J.; Jo, V. Y.; Rawal, B.; Chen, Y. H.; Catalano, P. S.; Lako, A.; Ciantra, Z.; Weirather, J. L.; Criscitiello, S.; Luoma, A.; Chau, N.; Lorch, J.; Kass, J. I.; Annino, D.; Goguen, L.; Desai, A.; Ross, B.; Shah, H. J.; Jacene, H. A.; Margalit, D. N.; Tishler, R. B.; Wucherpfennig, K. W.; Rodig, S. J.; Uppaluri, R.; Haddad, R. I. Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: a phase 2 open-label randomized clinical trial. JAMA oncol. 2020, 6, 1563–1570.

    Article  Google Scholar 

  8. Waterhouse, D. M.; Garon, E. B.; Chandler, J.; McCleod, M.; Hussein, M.; Jotte, R.; Horn, L.; Daniel, D. B.; Keogh, G.; Creelan, B.; Einhorn, L. H.; Baker, J.; Kasbari, S.; Nikolinakos, P.; Babu, S.; Couture, F.; Leighl, N. B.; Reynolds, C.; Blumenschein, G., Jr.; Gunuganti, V.; Li, A.; Aanur, N.; Spigel, D. R. Continuous versus 1-year fixed-duration nivolumab in previously treated advanced non-small-cell lung cancer: CheckMate 153. Jpn. J. Clin. Oncol. 2020, 38, 3863–3873.

    Article  CAS  Google Scholar 

  9. Cassetta, L.; Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904.

    Article  CAS  Google Scholar 

  10. Quail, D. F.; Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437.

    Article  CAS  Google Scholar 

  11. Elia, I.; Haigis, M. C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 2021, 3, 21–32.

    Article  Google Scholar 

  12. Bejarano, L.; Jordāo, M. J. C.; Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021, 11, 933–959.

    Article  CAS  Google Scholar 

  13. Bronte, V.; Murray, P. J. Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat. Med. 2015, 21, 117–119.

    Article  CAS  Google Scholar 

  14. Jurk, M.; Heil, F.; Vollmer, J.; Schetter, C.; Krieg, A. M.; Wagner, H.; Lipford, G.; Bauer, S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 2002, 3, 499.

    Article  CAS  Google Scholar 

  15. Krieg, A. M.; Vollmer, J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol. Rev. 2007, 220, 251–269.

    Article  CAS  Google Scholar 

  16. Sami, E.; Paul, B. T.; Koziol, J. A.; ElShamy, W. M. The Immunosuppressive Microenvironment in BRCA1-IRIS-Overexpressing TNBC Tumors is Induced by Bidirectional Interaction with Tumor-Associated Macrophages. Cancer Res. 2020, 80, 1102–1117.

    Article  CAS  Google Scholar 

  17. Marciscano, A. E.; Anandasabapathy, N. The role of dendritic cells in cancer and anti-tumor immunity. Semin. Immunol. 2021, 52, 101481.

    Article  CAS  Google Scholar 

  18. Xun, Y.; Yang, H.; Kaminska, B.; You, H. Toll-like receptors and tolllike receptor-targeted immunotherapy against glioma. J. Hematol. Oncol. 2021, 14, 176.

    Article  CAS  Google Scholar 

  19. Kim, S. Y.; Kim, S.; Kim, J. E.; Lee, S. N.; Shin, I. W.; Shin, H. S.; Jin, S. M.; Noh, Y. W.; Kang, Y. J.; Kim, Y. S.; Kang, T. H.; Park, Y. M.; Lim, Y. T. Lyophilizable and multifaceted toll-like receptor 7/8 agonist-loaded nanoemulsion for the reprogramming of tumor microenvironments and enhanced cancer immunotherapy. ACS Nano 2019, 13, 12671–12686.

    Article  CAS  Google Scholar 

  20. Michaelis, K. A.; Norgard, M. A.; Zhu, X.; Levasseur, P. R.; Sivagnanam, S.; Liudahl, S. M.; Burfeind, K. G.; Olson, B.; Pelz, K. R.; Angeles Ramos, D. M.; Maurer, H. C.; Olive, K. P.; Coussens, L. M.; Morgan, T. K.; Marks, D. L. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 2019, 10, 4682.

    Article  Google Scholar 

  21. Bahmani, B.; Gong, H.; Luk, B. T.; Haushalter, K. J.; DeTeresa, E.; Previti, M.; Zhou, J.; Gao, W.; Bui, J. D.; Zhang, L.; Fang, R. H.; Zhang, J. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun. 2021, 12, 1999.

    Article  CAS  Google Scholar 

  22. Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588.

    Article  CAS  Google Scholar 

  23. Li, H.; Somiya, M.; Kuroda, S. I. Enhancing antibody-dependent cellular phagocytosis by Re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes. Biomaterials 2021, 268, 120601.

    Article  CAS  Google Scholar 

  24. Wu, J. S.; Li, J. X.; Shu, N.; Duan, Q. J.; Tong, Q. S.; Zhang, J. Y.; Huang, Y. C.; Yang, S. Y.; Zhao, Z. B.; Du, J. Z. A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. Nano Res. 2021, 15, 510–518.

    Article  Google Scholar 

  25. Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A.; Buechler, C. R.; Quinn, K. M.; Smelkinson, M. G.; Vanek, O.; Cawood, R.; Hills, T.; Vasalatiy, O.; Kastenmüller, K.; Francica, J. R.; Stutts, L.; Tom, J. K.; Ryu, K. A.; Esser-Kahn, A. P.; Etrych, T.; Fisher, K. D.; Seymour, L. W.; Seder, R. A. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 2015, 33, 1201–1210.

    Article  CAS  Google Scholar 

  26. Wagner, J.; Gossl, D.; Ustyanovska, N.; Xiong, M.; Hauser, D.; Zhuzhgova, O.; Hocevar, S.; Taskoparan, B.; Poller, L.; Datz, S.; Engelke, H.; Daali, Y.; Bein, T.; Bourquin, C. Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano 2021, 15, 4450–4466.

    Article  CAS  Google Scholar 

  27. Lynn, G. M.; Sedlik, C.; Baharom, F.; Zhu, Y.; Ramirez-Valdez, R. A.; Coble, V. L.; Tobin, K.; Nichols, S. R.; Itzkowitz, Y.; Zaidi, N.; Gammon, J. M.; Blobel, N. J.; Denizeau, J.; de la Rochere, P.; Francica, B. J.; Decker, B.; Maciejewski, M.; Cheung, J.; Yamane, H.; Smelkinson, M. G.; Francica, J. R.; Laga, R.; Bernstock, J. D.; Seymour, L. W.; Drake, C. G.; Jewell, C. M.; Lantz, O.; Piaggio, E.; Ishizuka, A. S.; Seder, R. A. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 2020, 38, 320–332.

    Article  CAS  Google Scholar 

  28. Pinelli, F.; Saadati, M.; Zare, E. N.; Makvandi, P.; Masi, M.; Sacchetti, A.; Rossi, F. A perspective on the applications of functionalized nanogels: promises and challenges. Int. Mat. Rev. 2022, 1–25.

  29. Gao, X.; Li, S.; Ding, F.; Liu, X.; Wu, Y.; Li, J.; Feng, J.; Zhu, X.; Zhang, C. A virus-mimicking nucleic acid nanogel reprograms microglia and macrophages for glioblastoma therapy. Adv. Mater. 2021, 33, e2006116.

    Article  Google Scholar 

  30. Wang, H.; Gao, L.; Fan, T.; Zhang, C.; Zhang, B.; Al-Hartomy, O. A.; Al-Ghamdi, A.; Wageh, S.; Qiu, M.; Zhang, H. Strategic design of intelligent-responsive nanogel carriers for cancer therapy. ACS Appl. Mater. 2021, 13, 54621–54647.

    Article  CAS  Google Scholar 

  31. Knipe, J. M.; Strong, L. E.; Peppas, N. A. Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-alpha Knockdown in the Intestine. Biomacromolecules 2016, 17, 788–797.

    Article  CAS  Google Scholar 

  32. Yang, C.; Wang, X.; Yao, X.; Zhang, Y.; Wu, W.; Jiang, X. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J. Control. Rel. 2015, 205, 206–217.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51922043, 52173122 and 31771091), Guangdong Provincial Program (No. 2017GC010304), Science and Technology Planning Project of Ganzhou (No. 202101074816), and Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Jin-Zhi Du.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KS., Jin, YF., Tong, QS. et al. A Redox-responsive Prodrug Nanogel of TLR7/8 Agonist for Improved Cancer Immunotherapy. Chin J Polym Sci 41, 32–39 (2023). https://doi.org/10.1007/s10118-022-2831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2831-0

Keywords

Navigation