Skip to main content
Log in

A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tumor associated macrophages (TAMs) tend to exhibit tumor-promoting M2 phenotype and contribute to the development of immunosuppressive microenvironment of solid tumors. Reprograming TAMs from M2 into tumoricidal M1 phenotype is robust for stimulating tumor immunosuppressive microenvironment (TIME). In this study, we developed a poly(amidoamine) (PAMAM) derivative dendrimer (denoted as fourth generation-N,N-diethylaminoethyl (G4-DEEA)) for efficient loading of Toll-like receptor 7 and 8 (TLR7/8) agonist (R848) to remodel the TIME for potent cancer immunotherapy. G4-DEEA exhibited a high loading capacity of R848 up to 35.9 wt% by taking advantage of its dendritic structure. The resulting formulation (designated as G4-DEEA@R848) effectively polarized M2 macrophages into M1 phenotype in vitro, and improved the maturation and activation of antigen-presenting cells. In the 4T1 orthotopic breast cancer model, G4-DEEA@R848 showed a stronger tumor inhibitory effect than free drug. The mechanistic studies suggested that G4-DEEA@R848 could significantly stimulate the TIME by repolarizing TAMs into M1 phenotype, reducing the presence of immunosuppressive myeloid cells and increasing the infiltration of tumor cytotoxic T cells. This study provides a simple but effective dendrimer-based strategy to improve the formulation of R848 for improved cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550.

    Article  CAS  Google Scholar 

  2. Hinshaw, D. C.; Shevde, L. A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019, 79, 4557–4566.

    Article  CAS  Google Scholar 

  3. Popel, A. S. Immunoactivating the tumor microenvironment enhances immunotherapy as predicted by integrative computational model. Proc. Natl. Acad. Sci. USA 2020, 117, 4447–4449.

    Article  CAS  Google Scholar 

  4. Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588.

    Article  CAS  Google Scholar 

  5. De Palma, M.; Lewis, C. E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013, 23, 277–286.

    Article  CAS  Google Scholar 

  6. Guerriero, J. L. Macrophages: The road less traveled, changing anticancer therapy. Trends Mol. Med. 2018, 24, 472–489.

    Article  CAS  Google Scholar 

  7. Movahedi, K.; Laoui, D.; Gysemans, C.; Baeten, M.; Stangé, G.; van den Bossche, J.; Mack, M.; Pipeleers, D.; In’t Veld, P.; De Baetselier, P. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from ly6c(high) monocytes. Cancer Res. 2010, 70, 5728–5739.

    Article  CAS  Google Scholar 

  8. Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23, 549–555.

    Article  CAS  Google Scholar 

  9. Biswas, S. K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896.

    Article  CAS  Google Scholar 

  10. Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 2014, 6, 1670–1690.

    Article  Google Scholar 

  11. Bronte, V.; Murray, P. J. Understanding local macrophage phenotypes in disease: Modulating macrophage function to treat cancer. Nat. Med. 2015, 21, 117–119.

    Article  CAS  Google Scholar 

  12. DeNardo, D. G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382.

    Article  CAS  Google Scholar 

  13. Pyonteck, S. M.; Akkari, L.; Schuhmacher, A. J.; Bowman, R. L.; Sevenich, L.; Quail, D. F.; Olson, O. C.; Quick, M. L.; Huse, J. T.; Teijeiro, V. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 2013, 19, 1264–1272.

    Article  CAS  Google Scholar 

  14. Hughes, R.; Qian, B. Z.; Rowan, C.; Muthana, M.; Keklikoglou, I.; Olson, O. C.; Tazzyman, S.; Danson, S.; Addison, C.; Clemons, M. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 2015, 75, 3479–3491.

    Article  CAS  Google Scholar 

  15. Arwert, E. N.; Harney, A. S.; Entenberg, D.; Wang, Y. R.; Sahai, E.; Pollard, J. W.; Condeelis, J. S. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 2018, 23, 1239–1248.

    Article  CAS  Google Scholar 

  16. Cassetta, L.; Pollard, J. W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904.

    Article  CAS  Google Scholar 

  17. Kulkarni, A.; Chandrasekar, V.; Natarajan, S. K.; Ramesh, A.; Pandey, P.; Nirgud, J.; Bhatnagar, H.; Ashok, D.; Ajay, A. K.; Sengupta, S. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat. Biomed. Eng. 2018, 2, 589–599.

    Article  CAS  Google Scholar 

  18. Ni, K. Y.; Luo, T. K.; Culbert, A.; Kaufmann, M.; Jiang, X. M.; Lin, W. B. Nanoscale metal-organic framework co-delivers TLR-7 agonists and anti-cd47 antibodies to modulate macrophages and orchestrate cancer immunotherapy. J. Am. Chem. Soc. 2020, 142, 12579–12584.

    Article  CAS  Google Scholar 

  19. Guerriero, J. L.; Sotayo, A.; Ponichtera, H. E.; Castrillon, J. A.; Pourzia, A. L.; Schad, S.; Johnson, S. F.; Carrasco, R. D.; Lazo, S.; Bronson, R. T. et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 2017, 543, 428–432.

    Article  CAS  Google Scholar 

  20. Panni, R. Z.; Herndon, J. M.; Zuo, C.; Hegde, S.; Hogg, G. D.; Knolhoff, B. L.; Breden, M. A.; Li, X. B.; Krisnawan, V. E.; Khan, S. Q. et al. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci. Transl. Med. 2019, 11, eaau9240.

    Article  Google Scholar 

  21. Michaelis, K. A.; Norgard, M. A.; Zhu, X. X.; Levasseur, P. R.; Sivagnanam, S.; Liudahl, S. M.; Burfeind, K. G.; Olson, B.; Pelz, K. R.; Angeles Ramos, D. M. et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 2019, 10, 4682.

    Article  Google Scholar 

  22. Liu, L. Q.; Wang, Y.; Guo, X.; Zhao, J. Y.; Zhou, S. B. A biomimetic polymer magnetic nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy. Small 2020, 16, 2003543.

    Article  CAS  Google Scholar 

  23. Jurk, M.; Heil, F.; Vollmer, J.; Schetter, C.; Krieg, A. M.; Wagner, H.; Lipford, G.; Bauer, S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound r-848. Nat. Immunol. 2002, 3, 499.

    Article  CAS  Google Scholar 

  24. Krieg, A. M.; Vollmer, J. Toll-like receptors 7, 8, and 9: Linking innate immunity to autoimmunity. Immunol. Rev. 2007, 220, 251–269.

    Article  CAS  Google Scholar 

  25. Duong, A. D.; Sharma, S.; Peine, K. J.; Gupta, G.; Satoskar, A. R.; Bachelder, E. M.; Wyslouzil, B. E.; Ainslie, K. M. Electrospray encapsulation of toll-like receptor agonist resiquimod in polymer microparticles for the treatment of visceral leishmaniasis. Mol. Pharm. 2013, 10, 1045–1055.

    Article  CAS  Google Scholar 

  26. Bachelder, E. M.; Beaudette, T. T.; Broaders, K. E.; Fréchet, J. M. J.; Albrecht, M. T.; Mateczun, A. J.; Ainslie, K. M.; Pesce, J. T.; Keane-Myers, A. M. In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants. Mol. Pharm. 2010, 7, 826–835.

    Article  CAS  Google Scholar 

  27. Kim, S. Y.; Kim, S.; Kim, J. E.; Lee, S. N.; Shin, I. W.; Shin, H. S.; Jin, S. M.; Noh, Y. W.; Kang, Y. J.; Kim, Y. S. et al. Lyophilizable and multifaceted Toll-like receptor 7/8 agonist-loaded nanoemulsion for the reprogramming of tumor microenvironments and enhanced cancer immunotherapy. ACS Nano 2019, 13, 12671–12686.

    Article  CAS  Google Scholar 

  28. Huang, P.; Wang, D. L.; Su, Y.; Huang, W.; Zhou, Y. F.; Cui, D. X.; Zhu, X. Y.; Yan, D. Y. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 2014, 136, 11748–11756.

    Article  CAS  Google Scholar 

  29. Zhang, S. Y.; Zou, J.; Elsabahy, M.; Karwa, A.; Li, A.; Moore, D. A.; Dorshow, R. B.; Wooley, K. L. Poly(ethylene oxide)-block-polyphosphester-based paclitaxel conjugates as a platform for ultra-high paclitaxel-loaded multifunctional nanoparticles. Chem. Sci. 2013, 4, 2122–2126.

    Article  CAS  Google Scholar 

  30. Zhu, L. J.; Guo, Y. Y.; Qian, Q. H.; Yan, D. Y.; Li, Y. H.; Zhu, X. Y.; Zhang, C. Carrier-free delivery of precise drug-chemogene conjugates for synergistic treatment of drug-resistant cancer. Angew. Chem., Int. Ed. 2020, 59, 17944–17950.

    Article  CAS  Google Scholar 

  31. Hu, M.; Zhang, J.; Yu, Y. L.; Tu, K.; Yang, T.; Wang, Y.; Hu, Q.; Kong, L.; Zhang, Z. P. Injectable liquid crystal formation system for reshaping tumor immunosuppressive microenvironment to boost antitumor immunity: Postoperative chemoimmunotherapy. Small 2020, 16, 2004905.

    Article  CAS  Google Scholar 

  32. Vinod, N.; Hwang, D.; Azam, S. H.; van Swearingen, A. E. D.; Wayne, E.; Fussell, S. C.; Sokolsky-Papkov, M.; Pecot, C. V.; Kabanov, A. V. High-capacity poly(2-oxazoline) formulation of TLR 7/8 agonist extends survival in a chemo-insensitive, metastatic model of lung adenocarcinoma. Sci. Adv. 2020, 6, eaba5542.

    Article  CAS  Google Scholar 

  33. Tomalia, D.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: Starburst-dendritic macromolecules. Polym. J. 1985, 17, 117–132.

    Article  CAS  Google Scholar 

  34. Boas, U.; Heegaard, P. M. H. Dendrimers in drug research. Chem. Soc. Rev. 2004, 33, 43–63.

    Article  CAS  Google Scholar 

  35. Hanurry, E. Y.; Mekonnen, T. W.; Andrgie, A. T.; Darge, H. F.; Birhan, Y. S.; Hsu, W. H.; Chou, H. Y.; Cheng, C. C.; Lai, J. Y.; Tsai, H. C. Biotin-decorated PAMAM G4.5 dendrimer nanoparticles to enhance the delivery, anti-proliferative, and apoptotic effects of chemotherapeutic drug in cancer cells. Pharmaceutics 2020, 12, 443.

    Article  CAS  Google Scholar 

  36. Zhang, M. E.; Guo, R.; Kéri, M.; Bányai, I.; Zheng, Y.; Cao, M.; Cao, X. Y.; Shi, X. Y. Impact of dendrimer surface functional groups on the release of doxorubicin from dendrimer carriers. J. Phys. Chem. B 2014, 118, 1696–1706.

    Article  CAS  Google Scholar 

  37. Cheng, Y. Y.; Li, Y. W.; Wu, Q. L.; Xu, T. W. New insights into the interactions between dendrimers and surfactants by two dimensional NOE NMR spectroscopy. J. Phys. Chem. B 2008, 112, 12674–12680.

    Article  CAS  Google Scholar 

  38. Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol. 2017, 8, 261.

    Article  Google Scholar 

  39. Kulhari, H.; Pooja, D.; Prajapati, S. K.; Chauhan, A. S. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int. J. Pharm. 2011, 405, 203–209.

    Article  CAS  Google Scholar 

  40. Katare, Y. K.; Daya, R. P.; Sookram Gray, C.; Luckham, R. E.; Bhandari, J.; Chauhan, A. S.; Mishra, R. K. Brain targeting of a water insoluble antipsychotic drug haloperidol via the intranasal route using PAMAM dendrimer. Mol. Pharm. 2015, 12, 3380–3388.

    Article  CAS  Google Scholar 

  41. Zeng, Y.; Kurokawa, Y.; Win-Shwe, T. T.; Zeng, Q.; Hirano, S.; Zhang, Z. Y.; Sone, H. Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. J. Toxicol. Sci. 2016, 41, 351–370.

    Article  CAS  Google Scholar 

  42. Tong, Q. S.; Xu, W.; Huang, Q. Y.; Zhang, Y. R.; Shi, X. X.; Huang, H.; Li, H. J.; Du, J. Z.; Wang, J. Multi-stimuli responsive poly(amidoamine) dendrimers with peripheral N-dialkylaminoethyl carbamate moieties. Polym. Chem. 2019, 10, 656–662.

    Article  CAS  Google Scholar 

  43. Hu, J. J.; Cheng, Y. Y.; Ma, Y. R.; Wu, Q. L.; Xu, T. W. Host-guest chemistry and physicochemical properties of the dendrimer-mycophenolic acid complex. J. Phys. Chem. B 2009, 113, 64–74.

    Article  CAS  Google Scholar 

  44. D’Emanuele, A.; Attwood, D. Dendrimer-drug interactions. Adv. Drug Deliv. Rev. 2005, 57, 2147–2162.

    Article  Google Scholar 

  45. Wang, H.; Shao, N. N.; Qiao, S. N.; Cheng, Y. Y. Host-guest chemistry of dendrimer-cyclodextrin conjugates: Selective encapsulations of guests within dendrimer or cyclodextrin cavities revealed by NOE NMR techniques. J. Phys. Chem. B 2012, 116, 11217–11224.

    Article  CAS  Google Scholar 

  46. Georgoudaki, A. M.; Prokopec, K. E.; Boura, V. F.; Hellqvist, E.; Sohn, S.; Östling, J.; Dahan, R.; Harris, R. A.; Rantalainen, M.; Klevebring, D.; Sund, M. et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 2016, 15, 2000–2011.

    Article  CAS  Google Scholar 

  47. Gardner, A.; Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 2016, 37, 855–865.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (No. 2017YFA0205600), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2017A030306018), National Natural Science Foundation of China (Nos. 51922043 and 31771091), Guangdong Provincial Programs (Nos. 2017ZT07S054 and 2017GC010304), the Science and Technology Program of Guangzhou (No. 201902020018), and Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Bin Zhao or Jin-Zhi Du.

Electronic Supplementary Material

12274_2021_3510_MOESM1_ESM.pdf

A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JS., Li, JX., Shu, N. et al. A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. Nano Res. 15, 510–518 (2022). https://doi.org/10.1007/s12274-021-3510-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3510-0

Keywords

Navigation