Skip to main content
Log in

Systematic co-delivery of dual agonists to enhance cancer immunotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the tumor immunosuppressive microenvironment (TIME), antigen presenting cells (APCs) usually exhibit a tumor suppressor phenotype. Toll-like receptors (TLRs) agonists could reprogram M2-type macrophages to M1-type and stimulate dendritic cells (DCs) maturation. The combination of TLR7/8 and TLR9 agonists seems to have synergistic therapeutic efficacy. Here, we designed a lipid-coated mesoporous silica nanoparticle (MSNs@Lipo) for the co-delivery of TLR7/8 agonist resiquimod (R848) and TLR9 agonist CpG oligodeoxynucleotides (ODNs) (CpG@MSNs-R@L-M). R848 was firstly conjugated onto the nanoparticle via silane chemistry, which is acidic responsive drug release. Then, CpG was loaded onto the nanoparticle through the positive charge mainly from TLR7/8 agonist R848. Our in vitro experiments further indicated that both drugs have acid-responsive release properties and could be taken up by DCs and located on the endosomes of APCs. More importantly, CpG@MSNs-R@L-M could significantly improve the antitumor efficacy in B16F10 melanoma model. The mechanistic study demonstrated that CpG@MSNs-R@L-M could remarkably modulate the TIME by promoting the maturation of DCs and repolarizing macrophages from M2 to M1 phenotype and facilitating the infiltration of tumor cytotoxic T cells. It was concluded that in comparison to single agonist, the co-delivery of dual agonists, CpG and R848, can improve anti-tumor immune responses for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.

    Article  CAS  Google Scholar 

  2. Chen, D. S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10.

    Article  Google Scholar 

  3. Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 2014, 6, 1670–1690.

    Article  Google Scholar 

  4. Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (time) for effective therapy. Nat. Med. 2018, 24, 541–550.

    Article  CAS  Google Scholar 

  5. Hinshaw, D. C.; Shevde, L. A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019, 79, 4557–4566.

    Article  CAS  Google Scholar 

  6. Song, W. T.; Das, M.; Xu, Y. D.; Si, X. H.; Zhang, Y.; Tang, Z. H.; Chen, X. S. Leveraging biomaterials for cancer immunotherapy: Targeting pattern recognition receptors. Mater. Today Nano 2011, 5, 100029.

    Article  Google Scholar 

  7. Gao, M.; Xie, Y. Q.; Lei, K. W.; Zhao, Y.; Kurum, A.; Van Herck, S.; Guo, Y. G.; Hu, X. M.; Tang, L. A manganese phosphate nanocluster activates the cGAS-STING pathway for enhanced cancer immunotherapy. Adv. Ther. 2021, 4, 2100065.

    Article  CAS  Google Scholar 

  8. Maisonneuve, C.; Bertholet, S.; Philpott, D. J.; De Gregorio, E. Unleashing the potential of nod- and toll-like agonists as vaccine adjuvants. Proc. Nat. l Acad. Sci. USA 2014, 111, 12294–12299.

    Article  CAS  Google Scholar 

  9. Kaczanowska, S.; Joseph, A. M.; Davila, E. TLR agonists: Our best frenemy in cancer immunotherapy. J. Leukoc. Biol. 2013, 93, 847–863.

    Article  CAS  Google Scholar 

  10. O’Neill, L. A. J.; Golenbock, D.; Bowie, A. G. The history of tolllike receptors—Redefining innate immunity. Nat. Rev. Immunol. 2013, 13, 453–460.

    Article  Google Scholar 

  11. Smits, E. L. J. M.; Ponsaerts, P.; Berneman, Z. N.; Van Tendeloo, V. F. I. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 2008, 13, 859–875.

    Article  CAS  Google Scholar 

  12. Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588.

    Article  CAS  Google Scholar 

  13. Wan, D. D.; Que, H. Y.; Chen, L.; Lan, T. X.; Hong, W. Q.; He, C.; Yang, J. Y.; Wei, Y. Q.; Wei, X. W. Lymph-node-targeted cholesterolized TLR7 agonist liposomes provoke a safe and durable antitumor response. Nano Lett. 2021, 21, 7960–7969.

    Article  CAS  Google Scholar 

  14. Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5 8783–8789.

    Article  CAS  Google Scholar 

  15. Wu, J. S.; Li, J. X.; Shu, N.; Duan, Q. J.; Tong, Q. S.; Zhang, J. Y.; Huang, Y. C.; Yang, S. Y.; Zhao, Z. B.; Du, J. Z. A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. Nano Res. 2022, 15, 510–518.

    Article  CAS  Google Scholar 

  16. Chen, H. C.; Zhan, X.; Tran, K. K.; Shen, H. Selectively targeting the toll-like receptor 9 (TLR9)-IRF 7 signaling pathway by polymer blend particles. Biomaterials 2013, 34, 6464–6472.

    Article  CAS  Google Scholar 

  17. Wang, L.; He, Y.; He, T. T.; Liu, G.; Lin, C. H.; Li, K.; Lu, L.; Cai, K. Y. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials 2020, 255, 120208.

    Article  CAS  Google Scholar 

  18. Blasius, A. L.; Beutler, B. Intracellular toll-like receptors. Immunity 2010, 32, 305–315.

    Article  CAS  Google Scholar 

  19. Ni, Q. Q.; Zhang, F. W.; Liu, Y. J.; Wang, Z. T.; Yu, G. C.; Liang, B.; Niu, G.; Su, T.; Zhu, G.; Lu, G. M. et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci. Adv. 2020, 6, eaaw6071.

    Article  CAS  Google Scholar 

  20. Kawai, T.; Akira, S. TLR signaling. Cell Death Differential 2006, 13, 816–825.

    Article  CAS  Google Scholar 

  21. Engel, A. L.; Holt, G. E.; Lu, H. L. The pharmacokinetics of toll-like receptor agonists and the impact on the immune system. Exp. Rev. Clin. Pharmacol. 2011, 4, 275–289.

    Article  CAS  Google Scholar 

  22. Atukorale, P. U.; Raghunathan, S. P.; Raguveer, V.; Moon, T. J.; Zheng, C.; Bielecki, P. A.; Wiese, M. L.; Goldberg, A. L.; Covarrubias, G.; Hoimes, C. J. et al. Nanoparticle encapsulation of synergistic immune agonists enables systemic codelivery to tumor sites and IFNβ-driven antitumor immunity. Cancer Res. 2019, 79, 5394–5406.

    Article  CAS  Google Scholar 

  23. Xia, H. M.; Qin, M. M.; Wang, Z. H.; Wang, Y. Q.; Chen, B. L.; Wan, F. J.; Tang, M. M.; Pan, X. Q.; Yang, Y.; Liu, J. X. et al. A ph-/enzyme-responsive nanoparticle selectively targets endosomal tolllike receptors to potentiate robust cancer vaccination. Nano Lett. 2022, 22, 2978–2987.

    Article  CAS  Google Scholar 

  24. Madan-Lala, R.; Pradhan, P.; Roy, K. Combinatorial delivery of dual and triple TLR agonists via polymeric pathogen-like particles synergistically enhances innate and adaptive immune responses. Sci. Rep. 2017, 7, 2530.

    Article  Google Scholar 

  25. Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2011, 18, 175–196.

    Article  Google Scholar 

  26. Shao, K.; Singha, S.; Clemente-Casares, X.; Tsai, S.; Yang, Y.; Santamaria, P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015, 9, 16–30.

    Article  CAS  Google Scholar 

  27. Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol 2011, 14, 279–286.

    Article  Google Scholar 

  28. Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C. J.; Ng, K. W. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013, 4, 1673.

    Article  CAS  Google Scholar 

  29. Zhu, D. W.; Hu, C. Y.; Fan, F.; Qin, Y.; Huang, C. L.; Zhang, Z. M.; Lu, L.; Wang, H.; Sun, H. F.; Leng, X. G. et al. Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination. Biomaterials 2011, 206, 25–40.

    Article  Google Scholar 

  30. Shaikh, I. M.; Tan, K. B.; Chaudhury, A.; Liu, Y. J.; Tan, B. J.; Tan, B. M. J.; Chiu, G. N. C. Liposome co-encapsulation of synergistic combination of irinotecan and doxorubicin for the treatment of intraperitoneally grown ovarian tumor xenograft. J. Control. Release 2013, 172, 852–861.

    Article  CAS  Google Scholar 

  31. Palei, N. N.; Mohanta, B. C.; Sabapathi, M. L.; Das, M. K. Chapter 10—Lipid-based nanoparticles for cancer diagnosis and therapy. In Organic Materials as Smart Nanocarriers for Drug Delivery; Grumezescu, A. M., Ed.; William Andrew Publishing: Norwich, 2018; pp 415–470.

    Chapter  Google Scholar 

  32. Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S. Y.; Sood, A. K.; Hua, S. S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015, 6, 286.

    Article  Google Scholar 

  33. Bimbo, L. M.; Denisova, O. V.; Mäkilä, E.; Kaasalainen, M.; De Brabander, J. K.; Hirvonen, J.; Salonen, J.; Kakkola, L.; Kainov, D.; Santos, H. A. Inhibition of influenza a virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles. ACS Nano 2013, 7, 6884–6893.

    Article  CAS  Google Scholar 

  34. Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46, 792–801.

    Article  CAS  Google Scholar 

  35. Mukherjee, M. B.; Mullick, R.; Reddy, B. U.; Das, S.; Raichur, A. M. Galactose functionalized mesoporous silica nanoparticles as delivery vehicle in the treatment of hepatitis c infection. ACS Appl. Bio Mater. 2020, 3, 7598–7610.

    Article  CAS  Google Scholar 

  36. Parrott, M. C.; Finniss, M.; Luft, J. C.; Pandya, A.; Gullapalli, A.; Napier, M. E.; DeSimone, J. M. Incorporation and controlled release of silyl ether prodrugs from print nanoparticles. J. Am. Chem. Soc. 2012, 134, 7978–7982.

    Article  CAS  Google Scholar 

  37. Wagner, J.; Gößl, D.; Ustyanovska, N.; Xiong, M. Y.; Hauser, D.; Zhuzhgova, O.; Hočevar, S.; Taskoparan, B.; Poller, L.; Datz, S. et al. Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano 2021, 15, 4450–4466.

    Article  CAS  Google Scholar 

  38. Butler, K. S.; Durfee, P. N.; Theron, C.; Ashley, C. E.; Carnes, E. C.; Brinker, C. J. Protocells: Modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small 2016, 12, 2173–2185.

    Article  CAS  Google Scholar 

  39. Epler, K.; Padilla, D.; Phillips, G.; Crowder, P.; Castillo, R.; Wilkinson, D.; Wilkinson, B.; Burgard, C.; Kalinich, R.; Townson, J. et al. Delivery of ricin toxin A-chain by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. Adv. Healthc. Mater. 2012, 1, 348–353.

    Article  CAS  Google Scholar 

  40. Vahed, S. Z.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C 2017, 71, 1327–1341.

    Article  Google Scholar 

  41. Mornet, S.; Lambert, O.; Duguet, E.; Brisson, A. The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett. 2005, 5, 281–285.

    Article  CAS  Google Scholar 

  42. LaBauve, A. E.; Rinker, T. E.; Noureddine, A.; Serda, R. E.; Howe, J. Y.; Sherman, M. B.; Rasley, A.; Brinker, C. J.; Sasaki, D. Y.; Negrete, O. A. Lipid-coated mesoporous silica nanoparticles for the delivery of the ML336 antiviral to inhibit encephalitic alphavirus infection. Sci. Rep. 2018, 8, 13990.

    Article  Google Scholar 

  43. Van Schooneveld, M. M.; Vucic, E.; Koole, R.; Zhou, Y.; Stocks, J.; Cormode, D. P.; Tang, C. Y.; Gordon, R. E.; Nicolay, K.; Meijerink, A. et al. Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: A multimodality investigation. Nano Lett. 2008, 8, 2517–2525.

    Article  CAS  Google Scholar 

  44. Choi, E. S.; Song, J.; Kang, Y. Y.; Mok, H. Mannose-modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol. Biosci. 2019, 19, 1900042.

    Article  Google Scholar 

  45. Wang, D.; Huang, J. B.; Wang, X. X.; Yu, Y.; Zhang, H.; Chen, Y.; Liu, J. J.; Sun, Z. G.; Zou, H.; Sun, D. X. et al. The eradication of breast cancer cells and stem cells by 8-hydroxyquinoline-loaded hyaluronan modified mesoporous silica nanoparticle-supported lipid bilayers containing docetaxel. Biomaterials 2013, 34, 7662–7673.

    Article  CAS  Google Scholar 

  46. Teng, I. T.; Chang, Y. J.; Wang, L. S.; Lu, H. Y.; Wu, L. C.; Yang, C. M.; Chiu, C. C.; Yang, C. H.; Hsu, S. L.; Ho, J. A. A. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 2013, 34, 7462–7470.

    Article  CAS  Google Scholar 

  47. Roggers, R. A.; Lin, V. S. Y.; Trewyn, B. G. Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and hela and normal mouse liver cell biocompatibility and cellular internalization. Mol. Pharmaceutics 2012, 9, 2770–2777.

    Article  CAS  Google Scholar 

  48. Wan, X. J.; Wang, D.; Liu, S. Y. Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. Langmuir 2010, 26, 15574–15579.

    Article  CAS  Google Scholar 

  49. Ye, J.; Yang, Y. F.; Dong, W. J.; Gao, Y.; Meng, Y. Y.; Wang, H. L.; Li, L.; Jin, J.; Ji, M.; Xia, X. J. et al. Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages. Int J Nanomedicine 2019, 14, 3203–3220.

    Article  CAS  Google Scholar 

  50. Yang, R.; Xu, J.; Xu, L. G.; Sun, X. Q.; Chen, Q.; Zhao, Y. H.; Peng, R.; Liu, Z. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 2018, 12, 5121–5129.

    Article  CAS  Google Scholar 

  51. Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61.

    Article  CAS  Google Scholar 

  52. Hu, Y. B.; Dammer, E. B.; Ren, R. J.; Wang, G. The endosomal-lysosomal system: From acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 2015, 4, 18.

    Article  Google Scholar 

  53. Michaelis, K. A.; Norgard, M. A.; Zhu, X. X.; Levasseur, P. R.; Sivagnanam, S.; Liudahl, S. M.; Burfeind, K. G.; Olson, B.; Pelz, K. R.; Ramos, D. M. A. et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 2019, 10, 4682.

    Article  Google Scholar 

  54. Tsai, S. J.; Andorko, J. I.; Zeng, X. B.; Gammon, J. M.; Jewell, C. M. Polyplex interaction strength as a driver of potency during cancer immunotherapy. Nano Res. 2018, 11, 5642–5656.

    Article  CAS  Google Scholar 

  55. Gardner, A.; Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 2011, 37, 855–865.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Start-Up grant KY2060000124 and KJ2060190030 from University of Science and Technology of China and supported by National Natural Science Foundation of China (Nos. 31971299, GG2065010001, GG2060190386, and 82102953) and Fundamental Research Funds for the Central Universities (Nos. WK2060190101, WY2060190092, and WK9110000144).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Xia or Yuanzeng Min.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, G., Wang, Y. et al. Systematic co-delivery of dual agonists to enhance cancer immunotherapy. Nano Res. 15, 8326–8335 (2022). https://doi.org/10.1007/s12274-022-4504-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4504-2

Keywords

Navigation