Skip to main content
Log in

A Fast and Room-temperature Self-healing Thermal Conductive Polymer Composite

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermal conducting materials may be damaged during long-term use, resulting in the increase of thermal resistance and therefore inefficient heat dissipation. The introduction of self-healing ability may solve this problem, but the realization of fast and room-temperature self-healing in thermal conducting composites is quite challenging. Herein, we choose a flexible poly(dimethylsiloxane) polymer material (PDMS-COOH) as the matrix and graphene nanosheets as the thermal conductive filler to prepare a new kind of thermal conductive polymer composite (PDMS-COOH-CG) that can quickly self-heal at room temperature. The thermal conductivity of PDMS-COOH-CG10 with 10% of graphene content is 0.48 W·m−1·K−1, which is 16 times that of PDMS-COOH (0.03 W·m−1·K−1). At room temperature, self-healing efficiency of PDMS-COOH-CG10 based on tensile strength can be 53.8% for 30 s and 84.6% for 24 h. Dynamic infrared thermal imaging dipicted that after 2 min of self-healing at room temperature, the thermal conduction temperature near the damage was basically restored to the level of the pristine sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mack, C. A. Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf. 2011, 24, 202–207.

    Article  Google Scholar 

  2. Krishnan, S.; Garimella, S. V.; Chrysler, G. M.; Mahajan, R. V. Towards’a thermal Moore’s law. IEEE Trans. Adv. Packag. 2007, 30, 462–474.

    Article  Google Scholar 

  3. Lin, S. C.; Banerjee, K. Cool chips: opportunities and implications for power and thermal management. IEEE Trans. Electron Devices 2008, 55, 245–255.

    Article  CAS  Google Scholar 

  4. Zhang, F.; Feng, Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R-Rep. 2020, 142.

  5. Xie, B. H.; Huang, X.; Zhang, G. J. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol. 2013, 85, 98–103.

    Article  CAS  Google Scholar 

  6. Thermal Contact Conductance. In Encyclopedia of thermal stresses, Hetnarski, R. B., Ed. Springer Netherlands: Dordrecht, 2014; pp 4948–4948.

  7. Yovanovich, M. M. Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE T. Compon. Pack. T. 2005, 28, 182–206.

    Article  Google Scholar 

  8. Lewis, J. S.; Perrier, T.; Barani, Z.; Kargar, F.; Balandin, A. A. Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications. Nanotechnology 2021, 32, 142003.

    Article  CAS  PubMed  Google Scholar 

  9. Prasher, R. Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 2006, 94, 1571–1586.

    Article  CAS  Google Scholar 

  10. Sarvar, F.; Whalley, D. C.; Conway, P. P. In Thermal interface materials-a review of the state of the art, 2006 1st Electronic Systemintegration Technology Conference, 5–7 Sep. 2006; pp. 1292–1302.

  11. Chung, D. D. L. Thermal interface materials. J. Mater. Eng. Perform. 2001, 10, 56–59.

    Article  CAS  Google Scholar 

  12. Gwinn, J. P.; Webb, R. L. Performance and testing of thermal interface materials. Millpress Science Publishers: Rotterdam, 2002, p. 201–210.

  13. Guo, Y. Q.; Ruan, K. P.; Shi, X. T.; Yang, X. T.; Gu, J. W. Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos. Sci. Technol. 2020, 193, 25.

    Article  CAS  Google Scholar 

  14. He, X. H.; Wang, Y. C. Recent advances in the rational design of thermal conductive polymer composites. Ind. Eng. Chem. Res. 2021, 60, 1137–1154.

    Article  CAS  Google Scholar 

  15. Zhang, Z. X.; Qu, J. Y.; Feng, Y. Y.; Feng, W. Assembly of graphenealigned polymer composites for thermal conductive applications. Compos. Commun. 2018, 9, 33–41.

    Article  Google Scholar 

  16. Zhu, Z.; Li, C.; Songfeng, E.; Xie, L.; Geng, R.; Lin, C. T.; Li, L.; Yao, Y. Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos. Sci. Technol. 2019, 170, 93–100.

    Article  CAS  Google Scholar 

  17. Xu, X. F.; Chen, J.; Zhou, J.; Li, B. W. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 2018, 30, 1705544.

    Article  CAS  Google Scholar 

  18. Huang, C. L.; Qian, X.; Yang, R. G. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R-Rep. 2018, 132, 1–22.

    Article  Google Scholar 

  19. Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 2011, 36, 914–944.

    Article  CAS  Google Scholar 

  20. Billiet, S.; Hillewaere, X. K. D.; Teixeira, R. F. A.; Du Prez, F. E. Chemistry of crosslinking processes for self-healing polymers. Macromol. Rapid Commun. 2013, 34, 290–309.

    Article  CAS  PubMed  Google Scholar 

  21. Williams, K. A.; Dreyer, D. R.; Bielawski, C. W. The underlying chemistry of self-healing materials. MRS Bull. 2008, 33, 759–765.

    Article  CAS  Google Scholar 

  22. Wang, S. Y.; Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583.

    Article  CAS  Google Scholar 

  23. Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R. Self-healing polymers and composites. In Annual review of materials research, Vol 40, Clarke, D. R.; Ruhle, M.; Zok, F., Eds. Annual Reviews: Palo Alto, 2010; Vol. 40, pp. 179–211.

  24. Xu, Z. G.; Zhao, Y.; Wang, X. G.; Lin, T. A thermally healable polyhedral oligomeric silsesquioxane (POSS) nanocomposite based on Diels-Alder chemistry. Chem. Commun. 2013, 49, 6755–6757.

    Article  CAS  Google Scholar 

  25. Lin, C. H.; Sheng, D. K.; Liu, X. D.; Xu, S. B.; Ji, F.; Dong, L.; Zhou, Y.; Yang, Y. M. NIR induced self-healing electrical conductivity polyurethane/graphene nanocomposites based on Diels-Alder reaction. Polymer 2018, 140, 150–157.

    Article  CAS  Google Scholar 

  26. Jia, Z.; Zhu, S.; Chen, Y.; Zhang, W.; Zhong, B.; Jia, D. Recyclable and self-healing rubber composites based on thermorevesible dynamic covalent bonding. Pt. A-Appl. Sci. Manuf. 2020, 129, 105709.

    Article  CAS  Google Scholar 

  27. Yoon, J. A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolay, R.; Zhang, Y. Z.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K. Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 2012, 45, 142–149.

    Article  CAS  Google Scholar 

  28. Banerjee, S. L.; Bhattacharya, K.; Samanta, S.; Singha, N. K. Self-healable antifouling zwitterionic hydrogel based on synergistic phototriggered dynamic disulfide metathesis reaction and ionic interaction. ACS Appl. Mater. Interfaces 2018, 10, 27391–27406.

    Article  CAS  PubMed  Google Scholar 

  29. Xiang, H.; Yin, J.; Lin, G.; Liu, X.; Rong, M.; Zhang, M. Photo-crosslinkable, self-healable and reprocessable rubbers. Chem. Eng. J. 2019, 358, 878–890.

    Article  CAS  Google Scholar 

  30. Lai, J. C.; Mei, J. F.; Jia, X. Y.; Li, C. H.; You, X. Z.; Bao, Z. A. A stiff and healable polymer based on dynamic-covalent boroxine bonds. Adv. Mater. 2016, 28, 8277–8282.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, Y.; Tang, Z.; Zhang, X.; Liu, Y.; Wu, S.; Guo, B. Covalently cross-linked elastomers with self-healing and malleable abilities enabled by boronic ester bonds. ACS Appl. Mater. Interfaces 2018, 10, 24224–24231.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, C.; Yang, Z.; Duong, N. T.; Li, X.; Nishiyama, Y.; Wu, Q.; Zhang, R.; Sun, P. Using dynamic bonds to enhance the mechanical performance: from microscopic molecular interactions to macroscopic properties. Macromolecules 2019, 52, 5014–5025.

    Article  CAS  Google Scholar 

  33. Yang, X.; Guo, Y.; Luo, X.; Zheng, N.; Ma, T.; Tan, J.; Li, C.; Zhang, Q.; Gu, J. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 2018, 164, 59–64.

    Article  CAS  Google Scholar 

  34. Feng, Z.; Hu, J.; Zuo, H.; Ning, N.; Zhang, L.; Yu, B.; Tian, M. Photothermal-induced self-healable and reconfigurable shape memory bio-based elastomer with recyclable ability. ACS Appl. Mater. Interfaces 2019, 11, 1469–1479.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, D. P.; Zhao, Z. H.; Li, C. H.; Zuo, J. L. An ultrafast self-healing polydimethylsiloxane elastomer with persistent sealing performance. Mat. Chem. Front. 2019, 3, 1411–1421.

    Article  CAS  Google Scholar 

  36. Lei, X.; Huang, Y.; Liang, S.; Zhao, X.; Liu, L. Preparation of highly transparent, room-temperature self-healing and recyclable silicon elastomers based on dynamic imine bond and their ion responsive properties. Mater. Lett. 2020, 268, 127598.

    Article  CAS  Google Scholar 

  37. Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 619–625.

    Article  Google Scholar 

  38. Lai, J. C.; Li, L.; Wang, D. P.; Zhang, M. H.; Mo, S. R.; Wang, X.; Zeng, K. Y.; Li, C. H.; Jiang, Q.; You, X. Z.; Zuo, J. L. A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat. Commun. 2018, 9, 2725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang, H.; Liu, W.; Tu, Z.; Huang, J.; Qiu, X. Lignin-Reinforced nitrile rubber/poly(vinyl chloride) composites via metal coordination interactions. Ind. Eng. Chem. Res. 2019, 58, 23114–23123.

    Article  CAS  Google Scholar 

  40. Lai, J. C.; Jia, X. Y.; Wang, D. P.; Deng, Y. B.; Zheng, P.; Li, C. H.; Zuo, J. L.; Bao, Z. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 2019, 10, 1164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sordo, F.; Mougnier, S. J.; Loureiro, N.; Tournilhac, F.; Michaud, V. Design of self-healing supramolecular rubbers with a tunable number of chemical cross-links. Macromolecules 2015, 48, 4394–4402.

    Article  CAS  Google Scholar 

  42. Kang, J.; Son, D.; Wang, G. J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B. H.; Bao, Z. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 30, 1706846.

    Article  CAS  Google Scholar 

  43. Ogliani, E.; Yu, L.; Javakhishvili, I.; Skov, A. L. A thermo-reversible silicone elastomer with remotely controlled self-healing. RSC Adv. 2018, 8, 8285–8291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lai, H. Y.; Wang, H. Q.; Lai, J. C.; Li, C. H. A self-healing and shape memory polymer that functions at body temperature. Molecules 2019, 24, 12.

    Article  Google Scholar 

  45. Qiao, H.; Qi, P.; Zhang, X.; Wang, L.; Tan, Y.; Luan, Z.; Xia, Y.; Li, Y.; Sui, K. Multiple weak H-bonds lead to highly sensitive, stretchable, self adhesive, and self-healing ionic sensors. ACS Appl. Mater. Interfaces 2019, 11, 7755–7763.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, M. H.; Li, C. H.; Zuo, J. L. A supramolecular polymer formed by small molecules. Cell Rep. Phys. Sci. 2020, 1, 100144.

    Article  CAS  Google Scholar 

  47. Das, A.; Sallat, A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heinrich, G. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 2015, 7, 20623–20630.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, X.; Liu, J.; Fan, D.; Cao, J.; Huang, X.; Zheng, Z.; Zhang, X. Scalable manufacturing of real-time self-healing strain sensors based on brominated natural rubber. Chem. Eng. J. 2020, 389, 124448.

    Article  CAS  Google Scholar 

  49. Zhao, L.; Shi, X.; Yin, Y.; Jiang, B.; Huang, Y. A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Compos. Sci. Technol. 2020, 186, 107919.

    Article  CAS  Google Scholar 

  50. Yu, H.; Feng, Y.; Gao, L.; Chen, C.; Zhang, Z.; Feng, W. Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 2020, 53, 7161–7170.

    Article  CAS  Google Scholar 

  51. Liu, M.; Liu, P.; Lu, G.; Xu, Z.; Yao, X. Multiphase-assembly of siloxane oligomers with improved mechanical strength and water-enhanced healing. Angew. Chem. Int. Ed. 2018, 57, 11242–11246.

    Article  CAS  Google Scholar 

  52. Shahil, K. M.; Balandin, A. A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012, 12, 861–867.

    Article  CAS  PubMed  Google Scholar 

  53. Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C 2007, 111, 7565–7569.

    Article  CAS  Google Scholar 

  54. Gu, J.; Xie, C.; Li, H.; Dang, J.; Geng, W.; Zhang, Q. Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym. Compos. 2014, 35, 1087–1092.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21631006 and 21771100) and the Fundamental Research Funds for the Central Universities (No. 020514380212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hui Li.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, DW., Wang, HQ., Tao, HQ. et al. A Fast and Room-temperature Self-healing Thermal Conductive Polymer Composite. Chin J Polym Sci 39, 1328–1336 (2021). https://doi.org/10.1007/s10118-021-2620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2620-1

Keywords

Navigation