Skip to main content
Log in

Free-standing laser-induced graphene heaters for efficient curing and repairing of composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Driven by sustainable development, the energy-saving manufacturing and on-site repairing processes for fiber-reinforced polymer (FRP) composites are highly desired to replace the conventional autoclave or oven. In this work, the flexible, thin free-standing laser-induced graphene (FS-LIG) film was obtained by one-step laser irradiation on polybenzoxazine resin followed by rapid quench-peeling. The FS-LIG film showed the uniform, low-voltage driven, and long-term stable Joule heating effect. With attractive Joule performance, the FS-LIG film was developed as a heater for the out-of-autoclave fabrication of FRP composites. Compared with the conventional oven curing process, the FS-LIG-based Joule heating saved around 45% of the energy required without compromising the mechanical performance of obtained composites. Moreover, the FS-LIG film was interlayered into FRP composites to prepare the self-heating patch, which could not only provide heat for the on-site repair of structural composites but also serve as the reinforcement for mechanical properties. Furthermore, the integration of FS-LIG layer enabled the cured composites with additional functionalities including temperature and mechanical sensing to monitor the structural health of composites. This easy-fabricated FS-LIG heater showed enormous practical promise in the advanced manufacturing and repairing of composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128

    Article  CAS  Google Scholar 

  2. Torres M, Piedra S, Ledesma S, Escalante-Velázquez CA, Angelucci G (2019) Manufacturing process of high performance-low cost composite structures for light sport aircrafts. Aerospace 6(2):11

    Article  Google Scholar 

  3. Siochi EJ, Harrison JS (2015) Structural nanocomposites for aerospace applications. MRS Bull 40(10):829–835

    Article  Google Scholar 

  4. Hubert P, Fernlund G, Poursartip A (2012) Manufacturing techniques for polymer matrix composites (PMCs). Elsevier, New York

    Google Scholar 

  5. Abliz D, Duan Y, Steuernagel L, Xie L, Li D, Ziegmann G (2013) Curing methods for advanced polymer composites-a review. Polym Polym Compos 21(6):341–348

    CAS  Google Scholar 

  6. Cao D, Malakooti S, Kulkarni VN, Ren Y, Lu H (2021) Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mech Time Depend Mat 25(3):353–363

    Article  CAS  Google Scholar 

  7. Cao D, Malakooti S, Kulkarni VN et al (2022) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25(1):71–93

    Article  Google Scholar 

  8. Wang X, Xu T, Andrade MJD et al (2021) Challenges in mechanics of time dependent materials, vol 2. Springer, New York

    Google Scholar 

  9. Liu D-C, Hubert P (2021) Bulk factor characterization of heated debulked autoclave and out-of-autoclave carbon fibre prepregs. Compos B Eng 219:108940

    Article  CAS  Google Scholar 

  10. Centea T, Grunenfelder LK, Nutt SR (2015) A review of out-of-autoclave prepregs–material properties, process phenomena, and manufacturing considerations. Compos Part A Appl Sci Manuf 70:132–154

    Article  CAS  Google Scholar 

  11. Ramakrishnan B, Zhu L, Pitchumani R (2000) Curing of composites using internal resistive heating. J Manuf Sci Eng 122(1):124–131

    Article  Google Scholar 

  12. Lee J, Ni X, Daso F et al (2018) Advanced carbon fiber composite out-of-autoclave laminate manufacture via nanostructured out-of-oven conductive curing. Compos Sci Technol 166:150–159

    Article  CAS  Google Scholar 

  13. Liu Y, van Vliet T, Tao Y et al (2020) Sustainable and self-regulating out-of-oven manufacturing of FRPs with integrated multifunctional capabilities. Compos Sci Technol 190:108032

    Article  CAS  Google Scholar 

  14. Karalis G, Tzounis L, Dimos E et al (2021) Printed single-wall carbon nanotube-based Joule heating devices integrated as functional laminae in advanced composites. ACS Appl Mater Interfaces 13(33):39880–39893

    Article  CAS  Google Scholar 

  15. Katnam KB, Da Silva L, Young T (2013) Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Prog Areosp Sci 61:26–42

    Article  Google Scholar 

  16. Chong H, Liu S, Subramanian A et al (2018) Out-of-autoclave scarf repair of interlayer toughened carbon fibre composites using double vacuum debulking of patch. Compos Part A Appl Sci Manuf 107:224–234

    Article  CAS  Google Scholar 

  17. Xia T, Zeng D, Li Z, Young RJ, Vallés C, Kinloch IA (2018) Electrically conductive GNP/epoxy composites for out-of-autoclave thermoset curing through Joule heating. Compos Sci Technol 164:304–312

    Article  CAS  Google Scholar 

  18. Nguyen N, Hao A, Park JG, Liang R (2016) In situ curing and out-of-autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current. Adv Eng Mater 18(11):1906–1912

    Article  CAS  Google Scholar 

  19. Xu X, Zhang Y, Jiang J et al (2017) In-situ curing of glass fiber reinforced polymer composites via resistive heating of carbon nanotube films. Compos Sci Technol 149:20–27

    Article  CAS  Google Scholar 

  20. Lee J, Stein IY, Kessler SS, Wardle BL (2015) Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials. ACS Appl Mater Interfaces 7(16):8900–8905

    Article  CAS  Google Scholar 

  21. Lin J, Peng Z, Liu Y et al (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5(1):1–8

    Article  Google Scholar 

  22. Ramos E, Browar A, Roehling J, Ye J (2022) CO2 Laser sintering of garnet-type solid-state electrolytes. ACS Energy Lett 7(10):3392–3400

    Article  CAS  Google Scholar 

  23. Anas M, Cao H, Oh JH et al (2022) Rapid synthesis of patterned silicon carbide coatings using laser-induced pyrolysis and crystallization of polycarbosilane. Adv Eng Mater 24:2101383

  24. Long CT, Oh JH, Martinez AD et al (2022) Polymer infiltration and pyrolysis cycling for creating dense, conductive laser-induced graphene. Carbon 200:264–270

    Article  CAS  Google Scholar 

  25. Ye R, James DK, Tour JM (2018) Laser-induced graphene. Acc Chem Res 51(7):1609–1620

    Article  CAS  Google Scholar 

  26. Naseri I, Ziaee M, Nilsson ZN, Lustig DR, Yourdkhani M (2022) Electrothermal performance of heaters based on laser-induced graphene on aramid fabric. ACS Omega 7(4):3746–3757

    Article  CAS  Google Scholar 

  27. Liu F, Wang G, Ding X, Luo S (2021) Multifunctional laser-induced graphene enabled polymeric composites. Compos Commun 25:100714

    Article  Google Scholar 

  28. Ling Y, Pang W, Li X et al (2020) Laser-induced graphene for electrothermally controlled, mechanically guided, 3d assembly and human-soft actuators interaction. Adv Mater 32(17):1908475

    Article  CAS  Google Scholar 

  29. Wang G, Wang Y, Luo Y, Luo S (2020) A self-converted strategy toward multifunctional composites with laser-induced graphitic structures. Compos Sci Technol 199:108334

    Article  CAS  Google Scholar 

  30. Tao L-Q, Tian H, Liu Y et al (2017) An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun 8(1):1–8

    Article  CAS  Google Scholar 

  31. Stanford MG, Li JT, Chyan Y, Wang Z, Wang W, Tour JM (2019) Laser-induced graphene triboelectric nanogenerators. ACS Nano 13(6):7166–7174

    Article  CAS  Google Scholar 

  32. Nasser J, Zhang L, Sodano H (2021) Laser induced graphene interlaminar reinforcement for tough carbon fiber/epoxy composites. Compos Sci Technol 201:108493

    Article  CAS  Google Scholar 

  33. Wu Y, Karakurt I, Beker L et al (2018) Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sens Actuator A Phys 279:46–52

    Article  CAS  Google Scholar 

  34. Groo L, Nasser J, Inman DJ, Sodano HA (2021) Transfer printed laser induced graphene strain gauges for embedded sensing in fiberglass composites. Compos B Eng 219:108932

    Article  CAS  Google Scholar 

  35. Tu R, Liu T, Steinke K, Nasser J, Sodano HA (2022) Laser induced graphene-based out-of-autoclave curing of fiberglass reinforced polymer matrix composites. Compos Sci Technol 226:109529.

  36. Luong DX, Yang K, Yoon J et al (2019) Laser-induced graphene composites as multifunctional surfaces. ACS Nano 13(2):2579–2586

    CAS  Google Scholar 

  37. Cao L, Zhu S, Pan B et al (2020) Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 163:85–94

    Article  CAS  Google Scholar 

  38. Yu W, Peng Y, Cao L, Zhao W, Liu X (2021) Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding. Carbon 183:600–611

    Article  CAS  Google Scholar 

  39. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    Article  CAS  Google Scholar 

  40. Bae JJ, Lim SC, Han GH et al (2012) Heat dissipation of transparent graphene defoggers. Adv Funct Mater 22(22):4819–4826

    Article  CAS  Google Scholar 

  41. Chen J, Wang Y, Liu F, Luo S (2020) Laser-induced graphene paper heaters with multimodally patternable electrothermal performance for low-energy manufacturing of composites. ACS Appl Mater Interfaces 12(20):23284–23297

    Article  CAS  Google Scholar 

  42. Luo J, Gao S, Luo H et al (2021) Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J 406:126898

    Article  CAS  Google Scholar 

  43. Wang D, Li D, Zhao M, Xu Y, Wei Q (2018) Multifunctional wearable smart device based on conductive reduced graphene oxide/polyester fabric. Appl Surf Sci 454:218–226

    Article  CAS  Google Scholar 

  44. Xiao Z, Sheng C, Xia Y et al (2019) Electrical heating behavior of flexible thermoplastic polyurethane/Super-P nanoparticle composite films for advanced wearable heaters. J Ind Eng Chem 71:293–300

    Article  CAS  Google Scholar 

  45. Zhang D, Xu S, Zhao X, Qian W, Bowen CR, Yang Y (2020) Wireless monitoring of small strains in intelligent robots via a joule heating effect in stretchable graphene–polymer nanocomposites. Adv Funct Mater 30(13):1910809

    Article  CAS  Google Scholar 

  46. Zhou B, Su M, Yang D et al (2020) Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl Mater Interfaces 12(36):40859–40869

    Article  CAS  Google Scholar 

  47. K S, HT Co, (1988) Compressive strength of high performance fibers. The materials science and engineering of rigid rod polymers. Mater Res Soc Symp Proc 134:363–374

    Article  Google Scholar 

  48. Wang A, Chung D (2016) First report of fumed alumina incorporation in carbon–carbon composite and the consequent improvement of the oxidation resistance and mechanical properties. Carbon 101:281–289

    Article  CAS  Google Scholar 

  49. Cheng J, Wu X, Li G, Pang S-S, Taheri F (2007) Analysis of an adhesively bonded single-strap joint integrated with shape memory alloy (SMA) reinforced layers. Int J Solids Struct 44(10):3557–3574

    Article  CAS  Google Scholar 

  50. Mousavi SR, Estaji S, Paydayesh A et al (2022) A review of recent progress in improving the fracture toughness of epoxy-based composites using carbonaceous nanofillers. Polym Compos 43(4):1871–1886

    Article  CAS  Google Scholar 

  51. Shao Q, Liu G, Teweldebrhan D, Balandin A (2008) High-temperature quenching of electrical resistance in graphene interconnects. Appl Phys Lett 92(20):202108

    Article  Google Scholar 

  52. Zhang R, Baxendale M, Peijs T (2007) Universal resistivity-strain dependence of carbon nanotube/polymer composites. Phys Rev B 76(19):195433

    Article  Google Scholar 

  53. Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T (2013) Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos Sci Technol 74:85–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from National Natural Science Foundation of China (52003282, U1909220, 52003283), Zhejiang Provincial Natural Science Foundation of China (LR20E030001), Chinese Academy of Sciences (KFZD-SW-439), “Science and Technology Innovation 2025” Major Project of Ningbo (2018B10013), National Ten Thousand Talent Program for Young Top-notch Talents, Ten Thousand Talent Program for Young Top-notch Talents of Zhejiang Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Zhao or Xiaoqing Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10853_2023_8195_MOESM1_ESM.docx

Supplementary file 1 EDS mapping images and XPS spectra; Mechanical properties; SEM morphology; Voltage, current and power data for FS-LIG heater.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhao, W., Yu, W. et al. Free-standing laser-induced graphene heaters for efficient curing and repairing of composites. J Mater Sci 58, 2604–2618 (2023). https://doi.org/10.1007/s10853-023-08195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08195-y

Navigation