Skip to main content
Log in

Enhanced thermal conductivity and electrically insulating of polymer composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly thermally conductive but electrically insulating polymer composites play an increasingly important role in thermal management applications due to their features of easy processing and lightweight. Herein, a unique segregated network, which consists of graphene nanoplatelets (GNP) and boron nitride fibers (BNF), was constructed in polypropylene (PP)-based composites via two-screw extrusion. The thermal conductivity and electrical insulation characteristic of the composites could be well controlled by adjusting the content and size of GNP and BNF. When PP was filled with 9wt% GNP and 30wt% short BNF, the highest thermal conductivity of 1.32 W/(m·K) was achieved in this work, which is about six times higher than the value of neat PP, while remained a good electrical insulating (as low as 2.98 × 10−9 S/m). It proposed that the unique segregated network, where the BNF play as a bridge to connect the scattered GNP, could benefit for phonons transmission but effectively interrupt electron conduction. Our work provides a facile method to design and fabricate the highly thermally conductive but electrically insulating composites applied in thermal management materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Jin XX, Wang JF, Dai LZ, Wang WJ, Wu H (2019) Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube. Compos Sci Technol 184:107862

    CAS  Google Scholar 

  2. Kashfipour MA, Guo ML, Mu LW, Mehra N, Cheng ZH, Olivio J et al (2019) Carbon nanofiber reinforced co-continuous HDPE/PMMA composites: exploring the role of viscosity ratio on filler distribution and electrical/thermal properties. Compos Sci Technol 184:107859

    CAS  Google Scholar 

  3. Tan ZQ, Xiong DB, Fan GL, Chen ZZ, Guo Q, Guo CP et al (2018) Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion. J Mater Sci 53:6602–6612

    Article  CAS  Google Scholar 

  4. Kim GH, Lee D, Shanker A, Shao L, Kwon MS, Gidley D et al (2015) High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater 14:295–300

    CAS  Google Scholar 

  5. Han JK, Du GL, Gao WW, Bai H (2019) An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv Funct Mater 29:1900412

    Google Scholar 

  6. Kim K, Kim J (2016) BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating. Polymer 101:168–175

    CAS  Google Scholar 

  7. Chen HY, Ginzburg VV, Yang J, Yang YF, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog Polym Sci 59:41–85

    CAS  Google Scholar 

  8. Shan JJ, Wang S, Zhou F, Cui LZ, Zhang YF, Liu ZF (2020) Enhancing the heat-dissipation efficiency in ultrasonic transducers via embedding vertically oriented graphene-based porcelain radiators. Nano Lett 20:5097–5105

    CAS  Google Scholar 

  9. Zhu BL, Wang J, Zheng H, Ma J, Wu J, Wu R (2015) Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles. Compos Part B-Eng 69:496–506

    CAS  Google Scholar 

  10. Kargar F, Barani Z, Salgado R, Debnath B, Lewis JS, Aytan E et al (2018) Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. Acs Appl Mater Inter 10:37555–37565

    CAS  Google Scholar 

  11. Noh YJ, Kim SY (2015) Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets. Polym Test 45:132–138

    CAS  Google Scholar 

  12. Jiang F, Cui XL, Song N, Shi LY, Ding P (2020) Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos Commun 20:100350

    Google Scholar 

  13. Zhang K, Tao P, Zhang YH, Liao XP, Nie SX (2019) Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices. Carbohyd Polym 213:228–235

    CAS  Google Scholar 

  14. Hirahara T (2018) Designable core-shell graphite particles for thermally conductive and electrically insulating polymer composites. Rsc Adv 8:16781–16787

    CAS  Google Scholar 

  15. Balandin AA (2020) Phononics of Graphene and Related Materials. ACS Nano 14:5170–5178

    CAS  Google Scholar 

  16. Nika DL, Balandin AA (2017) Phonons and thermal transport in graphene and graphene-based materials. Rep on Prog Phys 80:036502

    Google Scholar 

  17. Lewis JS, Perrier T, Mohammadzadeh A, Kargar F, Balandin AA (2020) Power cycling and reliability testing of epoxy-based graphene thermal interface materials. C-J Carbon Res 6:26

    Google Scholar 

  18. Gu JW, Du JJ, Dang J, Geng WC, Hu SH, Zhang QY (2014) Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. Rsc Adv 4:22101–22105

    CAS  Google Scholar 

  19. Liao QW, Liu ZC, Liu W, Deng CC, Yang N (2015) Extremely high thermal conductivity of aligned carbon nanotube-polyethylene composites. Sci Rep-Uk 5:1–7

    Google Scholar 

  20. Yao YM, Zeng XL, Pan GR, Sun JJ, Hu JT, Huang Y et al (2016) Interfacial engineering of silicon carbide nanowire/cellulose microcrystal paper toward high thermal conductivity. Acs Appl Mater Inter 8:31248–31255

    CAS  Google Scholar 

  21. Shi A, Li Y, Liu W, Xu JZ, Yan DX, Lei J et al (2019) Highly thermally conductive and mechanically robust composite of linear ultrahigh molecular weight polyethylene and boron nitride via constructing nacre-like structure. Compos Sci Technol 184:107858

    CAS  Google Scholar 

  22. Fang J, Siqi C, Chompoonut R, Na S, Liyi S, Peng D (2019) Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem Mater 31:7686–7695

    Google Scholar 

  23. Yang CR, Chen CD, Cheng C, Shi WH, Chen PH, Teng TP (2020) Thermal conductivity enhancement of AlN/PDMS composites using atmospheric plasma modification techniques. Int J Therm Sci 155:106431

    CAS  Google Scholar 

  24. Li DX, Zeng D, Chen Q, Wei ML, Song L, Xiao CG et al (2019) Effect of different size complex fillers on thermal conductivity of PA6 thermal composites. Plast Rubber Compos 48:347–355

    CAS  Google Scholar 

  25. Kumar R, Mohanty S, Nayak SK (2019) Study on epoxy resin based thermal adhesive composite incorporated with expanded graphite/silver flake hybrids. Mater Today Commun 20:100561

    CAS  Google Scholar 

  26. Yang D, Ni YF, Kong XX, Gao DH, Wang Y, Hu TT et al (2019) Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant. Compos Sci Technol 177:18–25

    CAS  Google Scholar 

  27. Feng CP, Wan SS, Wu WC, Bai L, Bao RY, Liu ZY et al (2018) Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos Sci Technol 167:456–462

    CAS  Google Scholar 

  28. Lewis JS, Barani Z, Magana AS, Kargar F, Balandin AA (2019) Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Mater Res Express 6:085325

    Google Scholar 

  29. Taha-Tijerina J, Ribeiro H, Avina K, Martinez JM, Godoy AP, Cremonezzi JMD et al (2020) Thermal conductivity performance of 2D h-BN/MoS2/-hybrid nanostructures used on natural and synthetic esters. Nanomaterials-Basel 10:1160

    CAS  Google Scholar 

  30. Han YX, Shi XT, Yang XT, Guo YQ, Zhang JL, Kong J et al (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944

    CAS  Google Scholar 

  31. Chen J, Huang XY, Zhu YK, Jiang PK (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Func Mater 27:1604754. https://doi.org/10.1002/adfm.201604754

    Article  CAS  Google Scholar 

  32. Smith DK, Pantoya ML (2015) Effect of nanofiller shape on effective thermal conductivity of fluoropolymer composites. Compos Sci Technol 118:251–256

    CAS  Google Scholar 

  33. Yuan FY, Zhang HB, Li XF, Li XZ, Yu ZZ (2013) Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos Part a-Appl S 53:137–144

    CAS  Google Scholar 

  34. Tian XJ, Itkis ME, Haddon RC (2015) Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet-based thermal interface layers. Sci Rep-Uk 5:1–7

    CAS  Google Scholar 

  35. Yu AP, Ramesh P, Sun XB, Bekyarova E, Itkis ME, Haddon RC (2008) enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites. Adv Mater 20:4740

    CAS  Google Scholar 

  36. Harada M, Hamaura N, Ochi M, Agari Y (2013) Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure. Compos Part B-Eng 55:306–313

    CAS  Google Scholar 

  37. Huang L, Zhu PL, Li G, Zhou FR, Lu DQ, Sun R et al (2015) Spherical and flake-like BN filled epoxy composites: morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties. J Mater Sci-Mater El 26:3564–3572

    Article  CAS  Google Scholar 

  38. Yao YM, Sun JJ, Zeng XL, Sun R, Xu JB, Wong CP (2018) Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14:1704044

    Google Scholar 

  39. Mehra N, Mu LW, Ji T, Yang XT, Kong J, Gu JW et al (2018) Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today 12:92–130

    Google Scholar 

  40. Wang MC, Hu N, Zhou LM, Yan C (2015) Enhanced interfacial thermal transport across graphene-polymer interfaces by grafting polymer chains. Carbon 85:414–421

    CAS  Google Scholar 

  41. Moradi S, Calventus Y, Roman F, Hutchinson JM (2019) Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface. Polymers-Basel 11:1156

    Google Scholar 

  42. Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015) Thermally conductive graphene-polymer composites: size. Percolation Synerg Eff Chem Mater 27:2100–2106

    CAS  Google Scholar 

  43. Fang HM, Bai SL, Wong CP (2018) Microstructure engineering of graphene towards highly thermal conductive composites. Compos Part a-Appl S 112:216–238

    CAS  Google Scholar 

  44. An F, Li XF, Min P, Li HF, Dai Z, Yu ZZ (2018) Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126:119–127

    CAS  Google Scholar 

  45. Warzoha RJ, Fleischer AS (2014) Heat flow at nanoparticle interfaces. Nano Energy 6:137–158

    CAS  Google Scholar 

  46. Shaw LL (2000) Processing nanostructured materials: an overview. Jom-J Min Met Mat S 52:41–45

    CAS  Google Scholar 

  47. Chen RS, Ahmad S, Gan S, GhaniAb MH, Salleh MN (2015) Effects of compatibilizer, compounding method, extrusion parameters, and nanofiller loading in clay-reinforced recycled HDPE/PET nanocomposites. J Appl Polym Sci 132:42287

    Google Scholar 

  48. Bo J, Cai FP, Qin XZ, Wang B, Jiang GL, Gao JH (2020) The influence of extrusion process on micromorphology of PA 6/POE/POE-g-MA ternary blends: A quantitative analysis. J Elastom Plast https://doi.org/10.1177/0095244320915578

    Article  Google Scholar 

  49. Krishnamoorti R, Yurekli K (2001) Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid In 6:464–470

    CAS  Google Scholar 

  50. Wang K, Liang S, Deng JN, Yang H, Zhang Q, Fu Q et al (2006) The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites. Polymer 47:7131–7144

    CAS  Google Scholar 

  51. Ren JX, Krishnamoorti R (2003) Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36:4443–4451

    CAS  Google Scholar 

  52. Tang CY, Xiang LX, Su JX, Wang K, Yang CY, Zhang Q et al (2008) Largely improved tensile properties of chitosan film via the unique synergistic reinforcing effect of carbon nanotube and clay. J Phys Chem B 112:3876–3881

    CAS  Google Scholar 

  53. Liu T, Gao WG, Tian YL, Zhang DW, Zhang YF, Chang WF (2017) Power matching based dissipation strategy onto spindle heat generations. Appl Therm Eng 113:499–507

    Google Scholar 

  54. Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852–858

    CAS  Google Scholar 

  55. Choi HJ, Kim SG, Hyun YH, Jhon MS (2001) Preparation and rheological characteristics of solvent-cast poly(ethylene oxide)/montmorillonite nanocomposites. Macromol Rapid Comm 22:320–325

    CAS  Google Scholar 

  56. Qi XY, Yan D, Jiang ZG, Cao YK, Yu ZZ, Yavari F et al (2011) Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. Acs Appl Mater Inter 3:3130–3133

    CAS  Google Scholar 

  57. Dasari A, Yu ZZ, Mai YW (2009) Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50:4112–4121

    CAS  Google Scholar 

  58. Suplicz A, Szabo F, Kovacs JG (2013) Injection molding of ceramic filled polypropylene: the effect of thermal conductivity and cooling rate on crystallinity. Thermochim Acta 574:145–150

    CAS  Google Scholar 

  59. Li ZL, Ju DD, Han LJ, Dong LS (2017) Formation of more efficient thermally conductive pathways due to the synergistic effect of boron nitride and alumina in poly(3-hydroxylbutyrate). Thermochim Acta 652:9–16

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51601019, 51705085), Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (2016KQNCX043), and the Science and Technology Planning Project of Guangdong Province (2014A010105042, 2017A010102021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Chen, Y., Chen, X. et al. Enhanced thermal conductivity and electrically insulating of polymer composites. J Mater Sci 56, 4225–4238 (2021). https://doi.org/10.1007/s10853-020-05530-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05530-5

Navigation