Skip to main content
Log in

Boc-phenylalanine Grafted Poly(3,4-propylenedioxythiophene) Film for Electrochemically Chiral Recognition of 3,4-Dihydroxyphenylalanine Enantiomers

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To prepare chiral monomer with single chiral center and higher stereospecificity, a pair of amino-functionalized chiral 3,4-propylenedioxythiophene (ProDOT) derivatives, chiral (3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-3-yl)methyl 2-[(tert-butoxycarbonyl) amino]-3-phenylpropanoate (ProDOT-Boc-Phe), were synthesized. Chiral poly[(3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-3-yl)methyl 2-[(tert-butoxycarbonyl)amino]-3-phenylpropanoate] (PProDOT-Boc-Phe) modified electrodes were synthesized via potentiostatic polymerization of chiral ProDOT-Boc-Phe. Chiral PProDOT-Boc-Phe films displayed good reversible redox activities. The enantioselective recognition between chiral PProDOT-Boc-Phe modified glassy carbon electrodes and DOPA enantiomers was achieved by different electrochemical technologies, including cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV). (D)-PProDOT-Boc-Phe and (L)-PProDOT-Boc-Phe showed higher peak current responses toward L-DOPA and D-DOPA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanganyado, E.; Lu, Z. J.; Fu, Q. G.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527–542.

    Article  CAS  PubMed  Google Scholar 

  2. Ribeiro, C.; Santos, C.; Gonçalves, V.; Ramos, A.; Afonso, C.; Tiritan, M. E. Chiral drug analysis in forensic chemistry: An overview. Molecules 2018, 23, 262–309.

    Article  CAS  PubMed Central  Google Scholar 

  3. Pezzoli, G.; Zini, M. Levodopa in Parkinson’s disease: From the past to the future. Expert Opin. Pharmaco. 2010, 11, 627–635.

    Article  CAS  Google Scholar 

  4. Poewe, W.; Antonini, A.; Zijlmans, J. C.; Burkhard, P. R.; Vingerhoets, F. Levodopa in the treatment of Parkinson’s disease: An old drug still going strong. Clin. Interv. Aging 2010, 5, 229–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, Q.; Huang, Y.; Guo, L.; Chen, C.; Guo, D.; Chen, Y.; Fu, Y. DNA-based nanocomposite as electrochemical chiral sensing platform for the enantioselective interaction with quinine and quinidine. New J. Chem. 2014, 38, 4600–4606.

    Article  CAS  Google Scholar 

  6. Watarai, H.; Kurahashi, Y. Chiral recognition of 2-alkylalcohols with magnetic circular dichroism measurement of porphyrin J-aggregate on silica gel plate. Anal. Chem. 2016, 88, 4619–4623.

    Article  CAS  PubMed  Google Scholar 

  7. Balint, A.; Cârje, A. G.; Muntean, D. L.; Imre, S. The influence of some parameters on chiral separation of ibuprofen by high-performance liquid chromatography and capillary electrophoresis. Acta Med. Mar. 2017, 63, 36–40.

    CAS  Google Scholar 

  8. Lazzeretti, P. Chiral discrimination in nuclear magnetic resonance spectroscopy. J. Phys.: Condens. Matter 2017, 29, 443001–443094.

    Google Scholar 

  9. Schurig, V. Chiral separations using gas chromatography. TrAC, Trends Anal. Chem. 2002, 21, 647–661.

    Article  CAS  Google Scholar 

  10. Prior, A.; Coliva, G.; Jong, G. J.; Somsen, G. W. Chiral capillary electrophoresis with UV-excited fluorescence detection for the enantioselective analysis of 9-fluorenylmethoxycarbonylderivatized amino acids. Anal. Bioanal. Chem. 2018, 410, 4979–4990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, Y.; Han, Q.; Zhang, Q.; Guo, L.; Guo, D.; Fu, Y. A fast chiral sensing to DOPA enantiomers via poly-lysine films matrixes. Electrochim. Acta 2013, 113, 564–569.

    Article  CAS  Google Scholar 

  12. Trojanowicz, M. Enantioselective electrochemical sensors and biosensors: A mini-review. Electrochem. Commun. 2014, 38, 47–52.

    Article  CAS  Google Scholar 

  13. Wang, Z.; Xu, J.; Yao, Y.; Zhang, L.; Wen, Y.; Song, H.; Zhu, D. Facile preparation of highly water-stable and flexible PEDOT: PSS organic/inorganic composite materials and their application in electrochemical sensors. Sens. Actuators, B 2014, 196, 357–369.

    Article  CAS  Google Scholar 

  14. Manoli, K.; Magliulo, M.; Torsi, L. Chiral sensor devices for differentiation of enantiomers. Topics Curr. Chem. 2013, 341, 133–176.

    Article  CAS  Google Scholar 

  15. Li, J.; Hu, X.; Wang, J. Electrochemical recognition of chiral molecules with poly(4-bromoaniline) modified gold electrode. Electroanalysis 2013, 25, 1975–1980.

    Article  CAS  Google Scholar 

  16. Zhang, Y.; Lu, B.; Dong, L.; Sun, H.; Hu, D.; Xing, H.; Duan, X.; Chen, S.; Xu, J. Solvent effects on the synthesis, characterization and electrochromic properties of acetic acid modified polyterthiophene. Electrochim. Acta 2016, 220, 122–129.

    Article  CAS  Google Scholar 

  17. Caras-Quintero, D.; Bäuerle, P. Synthesis of the first enantiomerically pure and chiral, disubstituted 3,4-ethylenedioxythiophenes (EDOTs) and corresponding stereo- and regioregular PEDOTs. Chem. Commun. 2004, 926–927.

    Google Scholar 

  18. Jeong, Y. S.; Akagi, K. Control of chirality and electrochromism in copolymer-type chiral PEDOT derivatives by means of electrochemical oxidation and reduction. Macromolecules 2011, 44, 2418–2426.

    Article  CAS  Google Scholar 

  19. Dong, L.; Zhang, Y.; Duan, X.; Zhu, X.; Sun, H.; Xu, J. Chiral PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: Mechanism and model of chiral recognition. Anal. Chem. 2017, 89, 9695–9702.

    Article  CAS  PubMed  Google Scholar 

  20. Dong, L.; Zhang, L.; Duan, X.; Mo, D.; Xu, J.; Zhu, X. Synthesis and characterization of chiral PEDOT enantiomers bearing chiral moieties in side chains: Chiral recognition and its mechanism using electrochemical sensing technology. RSC Adv. 2016, 6, 11536–11545.

    Article  CAS  Google Scholar 

  21. Dong, L.; Lu, B.; Duan, X.; Xu, J.; Hu, D.; Zhang, K.; Sun, H.; Ming, S.; Wang, Z.; Zhen, S. Novel chiral PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers: Synthesis and characterization. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2238–2251.

    Article  CAS  Google Scholar 

  22. Dong, L. Q.; Hu, D. F.; Duan, X. M.; Wang, Z. P.; Zhang, K. X.; Zhu, X. F.; Sun, H.; Zhang, Y. S.; Xu, J. K. Synthesis and characterization of D-/L-methionine grafted PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers. Chinese J. Polym. Sci. 2016, 34, 563–577.

    Article  CAS  Google Scholar 

  23. Hu, D.; Lu, B.; Duan, X.; Xu, J.; Zhang, L.; Zhang, K., Zhang, S.; Zhen, S. Synthesis of novel chiral L-leucine grafted PEDOT derivatives with excellent electrochromic performances. RSC Adv. 2014, 4, 35597–35608.

    Article  CAS  Google Scholar 

  24. Hu, D.; Lu, B.; Zhang, K.; Sun, X.; Xu, J.; Duan, X.; Dong, L.; Sun, H.; Zhu, X.; Zhen, S. Synthesis of novel chiral Lphenylalanine grafted PEDOT derivatives with electrochemical chiral sensor for 3,4-dihydroxyphenylalanine discrimination. Int. J. Electrochem. Sci. 2015, 10, 3065–3081.

    CAS  Google Scholar 

  25. Zong, K.; Madrigal, L.; Groenendaal, L. B.; Reynolds, J. R. 3,4-Alkylenedioxy ring formation via double Mitsunobu reactions: An efficient route for the synthesis of 3,4-ethylenedioxythiophene (EDOT) and 3,4-propylenedioxythiophene (ProDOT) derivatives as monomers for electron-rich conducting polymers. Chem. Commun. 2002, 2498–2499.

    Google Scholar 

  26. Kumar, A.; Kumar, A. Single step reductive polymerization of functional 3,4-propylenedioxythiophenes via direct C?H arylation catalyzed by palladium acetate. Polym. Chem. 2010, 1, 286–288.

    Article  CAS  Google Scholar 

  27. Lu, B.; Lu, Y.; Wen, Y.; Duan, X.; Xu, J.; Chen, S.; Zhang, L. Synthesis, characterization, and vitamin C detection of a novel L-Alanine-modified PEDOT with enhanced chirality. Int. J. Electrochem. Sci. 2013, 8, 2826–2841.

    CAS  Google Scholar 

  28. Niu, J.; Chen, S.; Zhang, W.; Zhang, W.; Chai, K.; Ye, G.; Li, D.; Zhou, W.; Duan, X.; Xu, J. Supercapacitor properties of nanowire poly((3,4-dihydro-2H-thieno[3,4-b][1,4] dioxepin-3-yl)methanol) free-supporting films. Electrochim. Acta 2018, 283, 488–496.

    Article  CAS  Google Scholar 

  29. Lu, B.; Zhang, S.; Qin, L.; Chen, S.; Zhen, S.; Xu, J. Electrosynthesis of poly(3,4-ethylenedithiathiophene) in an ionic liquid and its electrochemistry and electrochromic properties. Electrochim. Acta 2013, 106, 201–208.

    Article  CAS  Google Scholar 

  30. Lu, Y.; Wen, Y. P.; Lu, B. Y.; Duan, X. M.; Xu, J. K.; Zhang, L.; Huang, Y. Electrosynthesis and characterization of poly(hydroxy-methylated-3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application. Chinese J. Polym. Sci. 2012, 30, 824–836.

    Article  CAS  Google Scholar 

  31. Lu, B.; Zhen, S.; Zhang, S.; Xu, J.; Zhao, G. Highly stable hybrid selenophene-3,4-ethylenedioxythiophene as electrically conducting and electrochromic polymers. Polym. Chem. 2014, 5, 4896–4908.

    Article  CAS  Google Scholar 

  32. Anson, F. C. Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo) tetraacetate on mercury electrodes. Anal. Chem. 1964, 36, 932–934.

    Article  CAS  Google Scholar 

  33. Yao, Y.; Zhang, L.; Wen, Y.; Wang, Z.; Zhang, H.; Hu, D.; Xu, J.; Duan, X. Voltammetric determination of catechin using single-walled carbon nanotubes/poly(hydroxymethylated-3,4-ethylenedioxythiophene) composite modified electrode. Ionics 2015, 21, 2927–2936.

    Article  CAS  Google Scholar 

  34. Laviron, E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem. 1974, 52, 355–393.

    Article  CAS  Google Scholar 

  35. Velasco, J. G. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis 1997, 9, 880–882.

    Article  Google Scholar 

  36. Chen, L.; Chang, F.; Meng, L.; Li, M.; Zhu, Z. A novel electrochemical chiral sensor for 3,4-dihydroxyphenylalanine based on the combination of single-walled carbon nanotubes, sulfuric acid and square wave voltammetry. Analyst 2014, 139, 2243–2248.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Nos. 51762020 and 51603095), the Natural Science Foundation of Jiangxi Province (Nos. 20171ACB20026 and 20181BAB206015), the Jiangxi Provincial Department of Education (No. GJJ170662), the Innovation Driven "5511" the Natural Science Foundation of Jiangxi Province (No. 20165BCB18016), Students Innovation and Entrepreneurship Training Program (No. 20181204066), Projects for Postgraduate Innovation in Jiangxi (No. YC2017-X19), and the Jiangxi Provincial Key Laboratory of Drug Design and Evaluation (No. 20171BCD40015) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Chen, Jing-Kun Xu or Xue-Min Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, JL., Chai, KK., Zeng, MX. et al. Boc-phenylalanine Grafted Poly(3,4-propylenedioxythiophene) Film for Electrochemically Chiral Recognition of 3,4-Dihydroxyphenylalanine Enantiomers. Chin J Polym Sci 37, 451–461 (2019). https://doi.org/10.1007/s10118-019-2211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2211-6

Keywords

Navigation