Skip to main content

Chiral Sensor Devices for Differentiation of Enantiomers

  • Chapter
  • First Online:
Differentiation of Enantiomers II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 341))

Abstract

Differentiation of enantiomers remains one of the most attractive and important research areas in analytical chemistry due to its impact on pharmaceutical, chemical, biotechnology, and food industries. For a long time chiral separation techniques, such as high performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrophoresis (CE), have represented the gold standard for the separation and determination of enantiomers. These techniques, besides being time consuming and expensive, are also not suitable for real time analysis. Therefore, the development of fast and reliable chiral sensors remains a challenge to achieve on-line analysis of enantiomers in both gas and liquid samples. The scope of this chapter is to provide an overview on the basic functioning principles, as well as on the performance level, of solid-state sensing devices for enantiomers differentiation. Particular attention is paid to work providing a set of analytical figures of merit (sensitivity, repeatability, reproducibility, limit-of-detection, etc.) as well as to studies involving miniaturized (or miniaturizable) analytical devices that can deliver real-time, on-line, and label-free information on chiral compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

Ala:

Alanine

Apt:

Aptamer

APTES:

3-Aminopropyltriethoxysilane

Asp:

Aspartic acid

CD:

Cyclodextrins

CLEP:

Chiral ligand exchange potentiometry

CSA:

Camphor sulfonic acid

CV:

Cyclic voltammetry

Cy:

Cysteine

DOPA:

Dopamine

DPV:

Differential pulse voltammetry

EIS:

Electrochemical impedance spectroscopy

GC:

Gas chromatography

Glu:

Glutamic acid

GSA:

Goat serum albumin

Hcy:

Homocysteine

His:

Histidine

HSA:

Human serum albumin

ISE:

Ion-selective electrode

ISFET:

Ion-selective field effect transistor

ITO:

Indium tin oxide

MA:

Mandelic acid

MIP:

Molecular imprinted polymer

MPTMS:

(3-Mercaptopropyl)trimethoxysilane

OCD:

Optical circular dichroism

OFET:

Organic film effect transistor

OTS:

Octadecyltrichlorosilane

PDMS:

Polydimethylsiloxane

PET:

Polyethyleneterephthalate

PPE:

Poly(phenylenethynylene)

PPy:

Poly(pyrrole)

PVC:

Polyvinylchloride

QCM:

Quartz crystal microbalance

RbSA:

Rabbit serum albumin

SAM:

Self-assembled monolayer

Try:

Tryptophan

TSMR:

Thickness shear mode resonator

Tym:

Tyrosinamide

Tyr:

Tyrosine

References

  1. Hembury GA, Borovkov VV, Inoue Y (2008) Chirality-sensing supramolecular systems. Chem Rev 108(1):1–73

    CAS  Google Scholar 

  2. Hutt AJ (2005) Drug chirality and its pharmacological consequences. In: Smith J (ed) Introduction to the principles of drug design and action. Harwood Academic, Amsterdam, pp 117–183

    Google Scholar 

  3. Ward TJ, Baker BA (2008) Chiral separations. Anal Chem 80:4363–4372

    CAS  Google Scholar 

  4. Garrison AW, Schmitt-Kopplin P, Avants JK (2008) Analysis of the enantiomers of chiral pesticides and other pollutants in environmental samples by capillary electrophoresis. In: Capillary electrophoresis, vol 384. Methods in molecular biology™. Humana, Totowa, pp 157–170

    Google Scholar 

  5. Zawirska-Wojtasiak R (2006) Chirality and the nature of food: authenticity of aroma. Acta Sci Pol Technol Aliment 5(1):21–36

    CAS  Google Scholar 

  6. Trojanowicz M, Kaniewska M (2008) Electrochemical chiral sensors and biosensors. Electroanalysis 21(3–5):229–238

    Google Scholar 

  7. Berthod A (2006) Chiral recognition mechanisms. Anal Chem 78(7):2093–2099

    Google Scholar 

  8. Cramer F (1994) The lock and key principle. Wiley, Chichester

    Google Scholar 

  9. Izake EL (2007) Chiral discrimination and enantioselective analysis of drugs: an overview. J Pharm Sci 96(7):1659–1676

    CAS  Google Scholar 

  10. Zhang J, Albelda MT, Liu Y, Canary JW (2005) Chiral nanotechnology. Chirality 17(7):404–420

    CAS  Google Scholar 

  11. Ali I, Saleem K, Hussain I, Gaitonde VD, Aboul-Enein HY (2009) Polysaccharides chiral stationary phases in liquid chromatography. Sep Purif Rev 38(2):97–147

    CAS  Google Scholar 

  12. Stefan-van Staden R-I, van Staden JF, Aboul-Enein HY, Mirica MC, Iorga M, Balcu I (2009) Maltodextrins as chiral selectors in biomedical enantioanalysis: a mini review. Open Chem Biomed Meth J 2:107–110

    CAS  Google Scholar 

  13. Shahgaldian P, Pieles U (2006) Cyclodextrin derivatives as chiral supramolecular receptors for enantioselective sensing. Sensors 6(6):593–615

    CAS  Google Scholar 

  14. Ohsawa K, Kasamatsu T, Nagashima J, Hanawa K, Kuwahara M, Ozaki H, Sawai H (2008) Arginine-modified DNA aptamers that show enantioselective recognition of the dicarboxylic acid moiety of glutamic acid. Anal Sci 24(1):167–172

    CAS  Google Scholar 

  15. Challier L, Mavre F, Moreau J, Fave C, Schollhorm B, Marchal D, Peyrin E, Noel V, Limoges B (2012) Simple and highly enantioselective electrochemical aptamer-based binding assay for trace detection of chiral compounds. Anal Chem 84(12):5415–5420

    CAS  Google Scholar 

  16. Maier NM, Lindner W (2007) Chiral recognition applications of molecularly imprinted polymers: a critical review. Anal Bioanal Chem 389(2):377–397

    CAS  Google Scholar 

  17. Yashima E, Maeda K, Nishimura T (2003) Detection and amplification of chirality by helical polymers. Chem-Eur J J10(1):42–51

    Google Scholar 

  18. Yashima E, Maeda K (2008) Chirality-responsive helical polymers. Macromolecules 41(1):3–12

    CAS  Google Scholar 

  19. Kane-Maguire LAP, Wallace GG (2010) Chiral conducting polymers. Chem Soc Rev 39(7):2545–2576

    CAS  Google Scholar 

  20. Badis M, Tomaszkiewicz I, Joly JP, Rogalska E (2004) Enantiomeric recognition of amino acids by amphiphilic crown ethers in Langmuir monolayers. Langmuir 20(15):6259–6267

    CAS  Google Scholar 

  21. Diamond D, Nolan K (2001) Peer reviewed: calixarenes: designer ligands for chemical sensors. Anal Chem 73(1):22–29

    Google Scholar 

  22. Guangyan Q, Shunying L, Yongbing H (2008) Chiral recognition based on calix[4]arene. Prog Chem 20(12):1933–1944

    Google Scholar 

  23. Pietraszkiewicz M, Prus P, Bilewicz R (1999) pH dependent enantioselection of amino acids by phosphorous-containing calix[4]resorcinarene in Langmuir monolayers. Polish J Chem 73:2035–2042

    CAS  Google Scholar 

  24. Wen W, Jingli H, Youzun C, Xiaojia H (2007) Progress in chiral sensors. Prog Chem 19(11):1820–1825

    Google Scholar 

  25. Maier NM, Franco P, Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 906(1):3–33

    CAS  Google Scholar 

  26. Inagaki S, Min JZ, Toyo'oka T (2008) Prediction for the separation efficiency of a pair of enantiomers during chiral high-performance liquid chromatography using a quartz crystal microbalance. Anal Chem 80(5):1824–1828

    CAS  Google Scholar 

  27. Hierlemann A, Baltes H, Schurig V (2001) Search for extraterrestrial enantioenrichment by using chemical microsensors. Enantiomer 6(2–3):129

    CAS  Google Scholar 

  28. Trojanowicz M, Wcislo M (2005) Electrochemical and piezoelectric enantioselective sensors and biosensors. Anal Lett 38(4):523–547

    CAS  Google Scholar 

  29. Budnikov G, Evtyugin G, Budnikova YG, Al'fonsov V (2008) Chemically modified electrodes with amperometric response in enantioselective analysis. J Anal Chem 63(1):2–12

    CAS  Google Scholar 

  30. Stefan R-I, van Staden JF, Aboul-Enein HY (2004) Enantioselective, potentiometric membrane electrodes for the determination of l-pipecolic acid in serum. Electroanalysis 16(20):1730–1733

    CAS  Google Scholar 

  31. Stefan-van Staden R-I, Mashile TR (2006) Enantioselective assay of S(+)-ibuprofen using enantioselective, potentiometric membrane electrodes based on maltodextrins. Sens Actuators B 120(1):295–297

    CAS  Google Scholar 

  32. Stefan-van Staden R-I, Bokretsion RG, Ozoemena KI (2006) Utilization of maltodextrin-based enantioselective, potentiometric membrane electrodes for the enantioselective assay of S-flurbiprofen. Anal Lett 39(6):1065–1073

    Google Scholar 

  33. Ozoemena KI, Stefan R-I (2004) Enantioselective, potentiometric membrane electrodes based on maltodextrins: their applications for the determination of l-proline. Sens Actuators B 98(1):97–100

    CAS  Google Scholar 

  34. Stefan R-I, van Staden JKF, Aboul-Enein HY (2000) Simultaneous detection of S and R-captopril using sequential injection analysis. Talanta 51(5):969–975

    CAS  Google Scholar 

  35. Ozoemena KI, Stefan R-I, Staden JF, Aboul-Enein HY (2004) Utilization of maltodextrin based enantioselective, potentiometric membrane electrodes for the enantioselective assay of S-perindopril. Talanta 62(4):681–685

    CAS  Google Scholar 

  36. Stefan-van Staden R-I, Bokretsion RG, Ozoemena KI, van Staden JF, Aboul-Enein HY (2006) Enantioselective, potentiometric membrane electrodes based on different cyclodextrins as chiral selectors for the assay of S-flurbiprofen. Electroanalysis 18(17):1718–1721

    CAS  Google Scholar 

  37. Stefan R-I, van Staden JKF, Aboul-Enein HY (1999) Analysis of chiral drugs with enantioselective biosensors. An overview. Electroanalysis 11(16):1233–1235

    CAS  Google Scholar 

  38. Stefan R-I, van Staden JKF, Aboul-Enein HY (1999) A new construction for a potentiometric, enantioselective membrane electrode-its utilization to the S-captopril assay. Talanta 48(5):1139–1143

    CAS  Google Scholar 

  39. Aboul-Enein HY, Stefan R-I, van Staden JF (1999) Analysis of several angiotensin-converting enzyme inhibitors using potentiometric, enantioselective membrane electrodes. Anal Lett 32(4):623–632

    CAS  Google Scholar 

  40. Ratko AA, Stefan R-I, van Staden JKF, Aboul-Enein HY (2004) Enantioselective, potentiometric membrane electrode based on vancomycin: its application for the determination of d-pipecolic acid. Sens Actuators B 99(2):539–543

    CAS  Google Scholar 

  41. Ratko AA, Stefan R-I, van Staden JKF, Aboul-Enein HY (2004) Determination of l-carnitine using enantioselective, potentiometric membrane electrodes based on macrocyclic antibiotics. Talanta 63(3):515–519

    CAS  Google Scholar 

  42. Ratko AA, Stefan R-I, van Staden JKF, Aboul-Enein HY (2004) Macrocyclic antibiotics as chiral selectors in the design of enantioselective, potentiometric membrane electrodes for the determination of l- and d-enantiomers of methotrexate. Talanta 64(1):145–150

    CAS  Google Scholar 

  43. Stefan-van Staden R-I, Moldoveanu I, Sava D-F, Kapnissi-Christodoulou C, van Staden JF (2013) Enantioanalysis of pipecolic acid with stochastic and potentiometric microsensors. Chirality 25(2):114–118

    CAS  Google Scholar 

  44. Kaniewska M, Sikora T, Kataky R, Trojanowicz M (2008) Enantioselectivity of potentiometric sensors with application of different mechanisms of chiral discrimination. J Biochem Biophys Methods 70(6):1261–1267

    CAS  Google Scholar 

  45. Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies. Angew Chem Int Ed Engl 34(17):1812–1832

    CAS  Google Scholar 

  46. Andersson L, Sellergren BR, Mosbach K (1984) Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Lett 25(45):5211–5214

    CAS  Google Scholar 

  47. Chen Y, Chen L, Bi R, Xu L, Liu Y (2012) A potentiometric chiral sensor for l-phenylalanine based on crosslinked polymethylacrylic acid-polycarbazole hybrid molecularly imprinted polymer. Anal Chim Acta 754:83–90

    CAS  Google Scholar 

  48. Matsunaga M, Nakanishi T, Asahi T, Osaka T (2007) Highly enantioselective discrimination of amino acids using copper deposition on a gold electrode modified with homocysteine monolayer. Electrochem Commun 9(4):725–728

    CAS  Google Scholar 

  49. Zhou Y, Yu B, Levon K, Nagaoka T (2004) Enantioselective recognition of aspartic acids by chiral ligand exchange potentiometry. Electroanalysis 16(11):955–960

    CAS  Google Scholar 

  50. Davankov VA, Semechkin AV (1977) Ligand-exchange chromatography. J Chromatogr A 141(3):313–353

    CAS  Google Scholar 

  51. Galaverna G, Corradini R, Dallavalle F, Folesani G, Dossena A, Marchelli R (2001) Chiral separation of amino acids by copper(II) complexes of tetradentate diaminodiamido-type ligands added to the eluent in reversed-phase high-performance liquid chromatography: a ligand exchange mechanism. J Chromatogr A 922(1):151–163

    CAS  Google Scholar 

  52. Chen Z, Uchiyama K, Hobo T (2004) Chiral resolution of dansyl amino acids by ligand exchange-capillary electrophoresis using Cu(II)-l-prolinamides as chiral selector. Anal Chim Acta 523(1):1–7

    CAS  Google Scholar 

  53. Zhou Y, Nagaoka T, Yu B, Levon K (2009) Chiral ligand exchange potentiometric aspartic acid sensors with polysiloxane films containing a chiral ligand N-carbobenzoxy-aspartic acid. Anal Chem 81(5):1888–1892

    CAS  Google Scholar 

  54. Yang Y, Hou J, Li B, Xu L (2010) Enantioselective ITO electrode modified with chiral salen Co(II) complex. Chem Lett 39(7):690–691

    CAS  Google Scholar 

  55. Xu L, Yang Y, Wang Y, Gao J (2009) Chiral salen Mn (III) complex-based enantioselective potentiometric sensor for l-mandelic acid. Anal Chim Acta 653(2):217–221

    CAS  Google Scholar 

  56. Stoica AI, Vinas C, Teixidor F (2009) Cobaltabisdicarbollide anion receptor for enantiomer-selective membrane electrodes. Chem Commun 33:4988–4990

    Google Scholar 

  57. Matsunaga M, Ueno T, Nakanishi T, Osaka T (2008) Enantioselective potential response of a human serum albumin-modified ITO electrode for tryptophan. Electrochem Commun 10(12):1844–1846

    CAS  Google Scholar 

  58. Yin X, Ding J, Zhang S, Kong J (2006) Enantioselective sensing of chiral amino acids by potentiometric sensors based on optical active polyaniline films. Biosens Bioelectron 21(11):2184–2187

    CAS  Google Scholar 

  59. Lahav M, Kharitonov AB, Willner I (2001) Imprinting of chiral molecular recognition sites in thin TiO2 films associated with field-effect transistors: novel functionalized devices for chiroselective and chirospecific analyses. Chemistry 7(18):3992–3997

    CAS  Google Scholar 

  60. Matsunaga M, Yamamoto D, Nakanishi T, Osaka T (2010) Chiral discrimination between alanine enantiomers by field effect transistor with a homocysteine monolayer-modified gate. Electrochim Acta 55(15):4501–4505

    CAS  Google Scholar 

  61. Yamamoto D, Nakanishi T, Osaka T (2011) Chiral sensing system based on the formation of diastereomeric metal complex on a homocysteine monolayer using field effect transistor. Electrochim Acta 56(26):9652–9655

    CAS  Google Scholar 

  62. Chen Q, Zhou J, Han Q, Wang Y, Fu Y (2012) A new chiral electrochemical sensor for the enantioselective recognition of penicillamine enantiomers. J Solid State Electrochem 16:2481–2485

    CAS  Google Scholar 

  63. Fu Y, Wang L, Chen Q, Zhou J (2011) Enantioselective recognition of chiral mandelic acid in the presence of Zn (II) ions by l-cysteine-modified electrode. Sens Actuators B 155(1):140–144

    CAS  Google Scholar 

  64. Fu Y, Chen Q, Zhou J, Han Q, Wang Y (2012) Enantioselective recognition of mandelic acid based on γ-globulin modified glassy carbon electrode. Anal Biochem 421:103–107

    CAS  Google Scholar 

  65. Chen Q, Zhou J, Han Q, Wang Y, Fu Y (2012) The selective adsorption of human serum albumin on N-isobutyryl-cysteine enantiomers modified chiral surfaces. Biochem Eng J 69:155–158

    CAS  Google Scholar 

  66. Basozabal I, Gomez-Caballero A, Unceta N, Goicolea MA, Barrio RJ (2011) Voltammetric sensors with chiral recognition capability: the use of a chiral inducing agent in polyaniline electrochemical synthesis for the specific recognition of the enantiomers of the pesticide dinoseb. Electrochim Acta 58:729–735

    CAS  Google Scholar 

  67. Huang J, Wei Z, Chen J (2008) Molecular imprinted polypyrrole nanowires for chiral amino acid recognition. Sens Actuators B 134(2):573–578

    CAS  Google Scholar 

  68. Prasad BB, Madhuri R, Tiwari MP, Sharma PS (2010) Enantioselective recognition of d- and l-tryptophan by imprinted polymer-carbon composite fiber sensor. Talanta 81(1):187–196

    CAS  Google Scholar 

  69. Prasad BB, Tiwari MP, Madhuri R, Sharma PS (2011) Enantioselective separation and electrochemical sensing of d- and l-tryptophan at ultratrace level using molecularly imprinted micro-solid phase extraction fiber coupled with complementary molecularly imprinted polymer-fiber sensor. J Chromatogr B 879(5):364–370

    CAS  Google Scholar 

  70. Stefan R-I, van Staden JKF, Aboul-Enein HY (2000) Amperometric biosensors/sequential injection analysis system for simultaneous determination of S- and R-captopril. Biosens Bioelectron 15(1):1–5

    CAS  Google Scholar 

  71. Stefan R-I, van Staden JF, Aboul-Enein HY (2003) Biosensors for the enantioselective analysis of pipecolic acid. Sens Actuators B 94(3):271–275

    CAS  Google Scholar 

  72. Stefan R-I, Bokretsion RG, van Staden JF, Aboul-Enein HY (2003) Determination of l- and d-enantiomers of methotrexate using amperometric biosensors. Talanta 60(5):983–990

    CAS  Google Scholar 

  73. Stefan-van Staden R-I, van Staden JF, Aboul-Enein HY (2012) Amperometric biosensor based on diamond paste for the enantioanalysis of l-lysine. Biosens Bioelectron 35:439–442

    CAS  Google Scholar 

  74. Granot E, Tel-Vered R, Lioubashevski O, Willner I (2008) Stereoselective and enantioselective electrochemical sensing of monosaccharides using imprinted boronic acid-functionalized polyphenol films. Adv Funct Mater 18(3):478–484

    CAS  Google Scholar 

  75. Ide J, Nakamoto T, Moriizumi T (1995) Discrimination of aromatic optical isomers using quartz-resonator sensors. Sens Actuators A 49(1):73–78

    CAS  Google Scholar 

  76. Bodenhöfer K, Hierlemann A, Juza M, Schurig V, Göpel W (1997) Chiral discrimination of inhalation anesthetics and methyl propionates by thickness shear mode resonators: new insights into the mechanisms of enantioselectivity by cyclodextrins. Anal Chem 69(19):4017–4031

    Google Scholar 

  77. Fietzek C, Hermle T, Rosenstiel W, Schurig V (2001) Chiral discrimination of limonene by use of β-cyclodextrin-coated quartz-crystal-microbalances (QCMs) and data evaluation by artificial neuronal networks. Fresenius J Anal Chem 371(1):58–63

    CAS  Google Scholar 

  78. Kieser B, Fietzek C, Schmidt R, Belge G, Weimar U, Schurig V, Gauglitz G (2002) Use of a modified cyclodextrin host for the enantioselective detection of a halogenated diether as chiral guest via optical and electrical transducers. Anal Chem 74(13):3005–3012

    CAS  Google Scholar 

  79. Ng SC, Sun T, Chan HSO (2003) Durable chiral sensor based on quartz crystal microbalance using self-assembled monolayer of permethylated β-cyclodextrin. Macromol Symp 192:171–182

    CAS  Google Scholar 

  80. Ng SC, Sun T, Chan HSO (2002) Chiral discrimination of enantiomers with a self-assembled monolayer of functionalized β-cyclodextrins on Au surfaces. Tetrahedron Lett 43(15):2863–2866

    CAS  Google Scholar 

  81. Xu C, Ng SC, Chan HSO (2008) Self-assembly of perfunctionalized β-cyclodextrins on a quartz crystal microbalance for real-time chiral recognition. Langmuir 24(16):9118–9124

    CAS  Google Scholar 

  82. Luo ML, Zhang WG, Zhang S, Fan J, Su WC, Yin X (2010) Self-assembly and chiral recognition of quartz crystal microbalance chiral sensor. Chirality 22(4):411–415

    CAS  Google Scholar 

  83. Haupt K, Noworyta K, Kutner W (1999) Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance. Anal Commun 36(11–12):391–393

    CAS  Google Scholar 

  84. Piacham T, Josell A, Arwin H, Prachayasittikul V, Ye L (2005) Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal Chim Acta 536(1):191–196

    CAS  Google Scholar 

  85. Percival C, Stanley S, Galle M, Braithwaite A, Newton M, McHale G, Hayes W (2001) Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes. Anal Chem 73(17):4225–4228

    CAS  Google Scholar 

  86. Stanley S, Percival C, Morel T, Braithwaite A, Newton M, McHale G, Hayes W (2003) Enantioselective detection of l-serine. Sens Actuators B 89(1):103–106

    CAS  Google Scholar 

  87. Cao L, Zhou XC, Li SFY (2001) Enantioselective sensor based on microgravimetric quartz crystal microbalance with molecularly imprinted polymer film. Analyst 126(2):184–188

    CAS  Google Scholar 

  88. Liu F, Liu X, Ng SC, Chan HSO (2006) Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan. Sens Actuators B 113(1):234–240

    CAS  Google Scholar 

  89. Syritski V, Reut J, Menaker A, Gyurcsanyi RE, Opik A (2008) Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid. Electrochim Acta 53(6):2729–2736

    CAS  Google Scholar 

  90. Kong Y, Zhao W, Yao S, Xu J, Wang W, Chen Z (2010) Molecularly imprinted polypyrrole prepared by electrodeposition for the selective recognition of tryptophan enantiomers. J Appl Polym Sci 115(4):1952–1957

    CAS  Google Scholar 

  91. Huang J, Egan VM, Guo H, Yoon JY, Briseno AL, Rauda IE, Garrell RL, Knobler C, Zhou F, Kaner RB (2003) Enantioselective discrimination of d- and l-phenylalanine by chiral polyaniline thin films. Adv Mater 15(14):1158–1161

    CAS  Google Scholar 

  92. Tanese M, Torsi L, Cioffi N, Zotti L, Colangiuli D, Farinola G, Babudri F, Naso F, Giangregorio M, Sabbatini L (2004) Poly(phenyleneethynylene) polymers bearing glucose substituents as promising active layers in enantioselective chemiresistors. Sens Actuators B 100(1):17–21

    CAS  Google Scholar 

  93. Guo HS, Kim JM, Chang SM, Kim WS (2009) Chiral recognition of mandelic acid by l-phenylalanine-modified sensor using quartz crystal microbalance. Biosens Bioelectron 24(9):2931–2934

    CAS  Google Scholar 

  94. Guo HS, Kim JM, Kim SJ, Chang SM, Kim WS (2009) Versatile method for chiral recognition by the quartz crystal microbalance: chiral mandelic acid as the detection model. Langmuir 25(2):648–652

    CAS  Google Scholar 

  95. Kim JM, Chang SM, He XK, Kim WS (2012) Development of real-time sensitive chiral analysis technique using quartz crystal analyzer. Sens Actuators B 171–172:478–485

    Google Scholar 

  96. Landsteiner K, Van der Scheer J (1928) Serological differentiation of steric isomers. J Exp Med 48(3):315–320

    CAS  Google Scholar 

  97. Dutta P, Tipple C, Lavrik N, Datskos P, Hofstetter H, Hofstetter O, Sepaniak M (2003) Enantioselective sensors based on antibody-mediated nanomechanics. Anal Chem 75(10):2342–2348

    CAS  Google Scholar 

  98. Su WC, Zhang WG, Zhang S, Fan J, Yin X, Luo ML, Ng SC (2009) A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor. Biosens Bioelectron 25(2):488–492

    CAS  Google Scholar 

  99. Chen WJ, Zhang S, Zhang WG, Fan J, Yin X, Zheng SR, Su WC, Zhang Z, Hong T (2012) A new biosensor for chiral recognition using goat and rabbit serum albumin self-assembled quartz crystal microbalance. Chirality 24:804–809

    CAS  Google Scholar 

  100. Nakanishi T, Yamakawa N, Asahi T, Shibata N, Ohtani B, Osaka T (2004) Chiral discrimination between thalidomide enantiomers using a solid surface with two-dimensional chirality. Chirality 16(S1):S36–S39

    CAS  Google Scholar 

  101. Guo W, Wang J, Wang C, He J-Q, X-W H, Cheng J-P (2002) Design, synthesis, and enantiomeric recognition of dicyclodipeptide-bearing calix[4]arenes: a promising family for chiral gas sensor coatings. Tetrahedron Lett 43(32):5665–5667

    CAS  Google Scholar 

  102. Severin EJ, Sanner RD, Doleman BJ, Lewis NS (1998) Differential detection of enantiomeric gaseous analytes using carbon black-chiral polymer composite, chemically sensitive resistors. Anal Chem 70(7):1440–1443

    CAS  Google Scholar 

  103. Costello BPJ, Ratcliffe NM, Sivanand PS (2003) The synthesis of novel 3-substituted pyrrole monomers possessing chiral side groups: a study of their chemical polymerisation and the assessment of their chiral discrimination properties. Synth Met 139(1):43–55

    Google Scholar 

  104. Torsi L, Marinelli F, Angione MD, Dell'Aquila A, Cioffi N, Giglio ED, Sabbatini L (2009) Contact effects in organic thin-film transistor sensors. Org Electron 10(2):233–239

    CAS  Google Scholar 

  105. Torsi L, Dodabalapur A (2005) Organic thin-film transistors as plastic analytical sensors. Anal Chem 77(19):380–387

    Google Scholar 

  106. Torsi L, Dodabalapur A, Sabbatini L, Zambonin PG (2000) Multi-parameter gas sensors based on organic thin-film-transistors. Sens Actuators B 67(3):312–316

    CAS  Google Scholar 

  107. Torsi L, Tafuri A, Cioffi N, Gallazzi M, Sassella A, Sabbatini L, Zambonin P (2003) Regioregular polythiophene field-effect transistors employed as chemical sensors. Sens Actuators B 93(1):257–262

    CAS  Google Scholar 

  108. Majewski LA, Schroeder R, Grell M (2005) One volt organic transistor. Adv Mater 17(2):192–196

    CAS  Google Scholar 

  109. Dost R, Das A, Grell M (2007) A novel characterization scheme for organic field-effect transistors. J Phys D Appl Phys 40(12):3563

    CAS  Google Scholar 

  110. Roberts ME, Mannsfeld SCB, Queralto N, Reese C, Locklin J, Knoll W, Bao Z (2008) Water-stable organic transistors and their application in chemical and biological sensors. Proc Natl Acad Sci 105(34):12134–12139

    CAS  Google Scholar 

  111. Sokolov AN, Roberts ME, Bao Z (2009) Fabrication of low-cost electronic biosensors. Mater Today 12(9):12–20

    Google Scholar 

  112. Angione MD, Cotrone S, Magliulo M, Mallardi A, Altamura D, Giannini C, Cioffi N, Sabbatini L, Fratini E, Baglioni P (2012) Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors. Proc Natl Acad Sci 109(17):6429–6434

    CAS  Google Scholar 

  113. Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, Babudri F, Palmisano F, Zambonin PG, Naso F (2008) A sensitivity-enhanced field-effect chiral sensor. Nat Mater 7(5):412–417

    CAS  Google Scholar 

  114. Bernards DA, Macaya DJ, Nikolou M, DeFranco JA, Takamatsu S, Malliaras GG (2007) Enzymatic sensing with organic electrochemical transistors. J Mater Chem 18(1):116–120

    Google Scholar 

  115. Ouyang R, Lei J, Ju H, Xue Y (2007) A molecularly imprinted copolymer designed for enantioselective recognition of glutamic acid. Adv Funct Mater 17(16):3223–3230

    CAS  Google Scholar 

  116. Zhang S, Ding J, Liu Y, Kong J, Hofstetter O (2006) Development of a highly enantioselective capacitive immunosensor for the detection of α-amino acids. Anal Chem 78(21):7592–7596

    CAS  Google Scholar 

  117. Kurzawski P, Bogdanski A, Schurig V, Wimmer R, Hierlemann A (2007) Opposite signs of capacitive microsensor signals upon exposure to the enantiomers of methyl propionate compounds. Angew Chem Int Ed 47(5):913–916

    Google Scholar 

  118. Kurzawski P, Bogdanski A, Schurig V, Wimmer R, Hierlemann A (2009) Direct determination of the enantiomeric purity or enantiomeric composition of methylpropionates using a single capacitive microsensor. Anal Chem 81(5):1969–1975

    CAS  Google Scholar 

  119. Kurzawski P, Schurig V, Hierlemann A (2009) Chiral sensing using a complementary metal-oxide semiconductor-integrated three-transducer microsensor system. Anal Chem 81(22):9353–9364

    CAS  Google Scholar 

  120. Hofstetter O, Hofstetter H, Wilchek M, Schurig V, Green BS (1999) Chiral discrimination using an immunosensor. Nat Biotechnol 17(4):371–374

    CAS  Google Scholar 

  121. Shahgaldian P, Hegner M, Pieles U (2005) A cyclodextrin self-assembled monolayer (SAM) based surface plasmon resonance (SPR) sensor for enantioselective analysis of thyroxine. J Incl Phenom Macrocycl Chem 53(1):35–39

    CAS  Google Scholar 

  122. Lieberman I, Shemer G, Fried T, Kosower EM, Markovich G (2008) Plasmon-resonance-enhanced absorption and circular dichroism. Angew Chem Int Ed 47(26):4855–4857

    CAS  Google Scholar 

  123. Ha JM, Solovyov A, Katz A (2008) Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance. Langmuir 25(1):153–158

    Google Scholar 

  124. Ha JM, Solovyov A, Katz A (2009) Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles. Langmuir 25(18):10548–10553

    CAS  Google Scholar 

  125. Ben-Amram Y, Riskin M, Willner I (2010) Selective and enantioselective analysis of mono- and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-functionalized Au nanoparticle composites. Analyst 135(11):2952–2959

    CAS  Google Scholar 

  126. Bodenhöfer K, Hierlemann A, Seemann J, Gauglitz G, Christian B, Koppenhoefer B, Göpel W (1997) Chiral discrimination in the gas phase using different transducers: thickness shear mode resonators and reflectometric interference spectroscopy. Anal Chem 69(15):3058–3068

    Google Scholar 

  127. Bodenhöfer K, Hierlemann A, Seemann J, Gauglitz G, Koppenhoefer B, Göpel W (1997) Chiral discrimination using piezoelectric and optical gas sensors. Nature 387:577–579

    Google Scholar 

  128. Nopper D, Lammershop O, Wulff G, Gauglitz G (2003) Amidine-based molecularly imprinted polymers-new sensitive elements for chiral chemosensors. Anal Bioanal Chem 377(4):608–613

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Torsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manoli, K., Magliulo, M., Torsi, L. (2013). Chiral Sensor Devices for Differentiation of Enantiomers. In: Schurig, V. (eds) Differentiation of Enantiomers II. Topics in Current Chemistry, vol 341. Springer, Cham. https://doi.org/10.1007/128_2013_444

Download citation

Publish with us

Policies and ethics