Skip to main content
Log in

New Polymer Syntheses Part 60: A Facile Synthetic Route to Polyamides Based on Thieno[2,3-b]thiophene and Their Corrosion Inhibition Behavior

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyamides containing thieno[2,3-b]thiophene moiety were prepared via a simple polycondensation reaction of the diaminothieno[2,3-b]thiophene monomer 1a with different kinds of diacid chlorides (including oxalyl, adipoyl, sebacoyl, isophthaloyl, terephthaloyl, 4,4′-azodibenzoyl, 3,3′-azodibenzoyl, p-phenylene diacryloyl) in the presence of LiCl and NMP as a solvent through lowtemperature solution polycondensation. The chemical structures of model compound and synthesized polyamides were confirmed by FTIR, nuclear magnetic resonance spectroscopy (including 1H-NMR and 13C-NMR) and elemental analysis. In addition, the thermal stability, crystallinity structure and surface morphology of synthesized polyamides were characterized via thermogravametric analysis (TGA), wide-angle X-ray diffraction analysis (WAXD) and scanning electron microscopy (SEM). Also, the corrosion inhibition behavior of selected examples of polyamides was investigated; the inhibitive effect of the investigated polymers for carbon steel in 1.0 mol·L−1 HCl was studied using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) methods. PDP results displayed that the polyamides containing thieno[2,3-b]thiophene moiety can be as mixed-type inhibitors. The inhibition efficiency (P, %) was found to be in the range from 67.13% to 96.01%. There is an increase in P by the synthesized polymers in comparison to the starting monomer. The adsorption of these polymers was found to obey Langmuir adsorption isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, H. H. “Aromatic high-strength fibers”, John Wiley & Sons, New York, 1989

    Google Scholar 

  2. Liou, G. S.; Yen, H. J. “Polyimides”, in: K. Matyjaszewski, M. Moller (eds.), “Polymer science: a comprehensive reference”, Elsevier Science, Amsterdam, 2012, P. 497–535

  3. Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: synthesis, physical properties and application. Prog. Polym. Sci. 2012, 37, 907–974

    Article  CAS  Google Scholar 

  4. Hsiao, S. H.; Peng, S. C.; Kung, Y. R.; Leu, C. M.; Lee, T. M. Synthesis and electro-optical properties of aromatic polyamides and polyimides. Eur. Polym. J. 2015, 73, 50–60

    Article  CAS  Google Scholar 

  5. Levchik, S. V.; Weil, E. D. Combustion and fire retardancy of aliphatic nylons. Polym. Int. 2000, 49, 1033–1073

    Article  CAS  Google Scholar 

  6. Wang, Y. F.; Chen, T. M.; Li, Y. J.; Kitamura, M.; Sakurai, I.; Nakaya, T. Studies on syntheses and properties of novel polyamides containing phosphatidyl choline analogous moieties by interfacial polycondensation. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3065–3074

    Article  CAS  Google Scholar 

  7. Ferrero, E.; Espeso, J. F.; de La Campa, J. G.; De Abajo, J.; Lozano, A. E. Synthesis and characterization of aromatic polyamides containing alkylphthalimido pendent groups. J. Polym. Sci. A: Polym. Chem. 2002, 40, 3711–3724

    Article  CAS  Google Scholar 

  8. Chen, Y.; Wang, Q. Preparation, properties and characterization of halogen-free nitrogen-phosphorous flameretarded glass fiber reinforced polyamide 6 composite. Polym. Degrad. Stab. 2006, 91, 2003–2013

    Article  CAS  Google Scholar 

  9. Wang, Q.; Shi, W. Synthesis and thermal decomposition of a novel hyperbranched polyphosphate ester used for flame retardant system. Polym. Degrad. Stab. 2006, 91, 1289–1294

    Article  CAS  Google Scholar 

  10. Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y. Synthesis and characterization of novel soluble triphenylaminecontaining aromatic polyamides based on W,W-bis(4-aminophenyl)-W,W-diphenyl-1,4-phynylene diamine. J. polym. Sci., Part A: Polym. Chem. 2002, 40, 2810–2818

    Article  CAS  Google Scholar 

  11. Chern, Y. T.; Wang, W. L. Synthesis and properties of new polyamides based on diamantine. Macromolecules 1995, 28, 5554–5560

    Article  CAS  Google Scholar 

  12. Liou, G. S.; Oishi, Y.; Kakimoto, M. A.; Imai, Y. Preparation and properties of aromatic polyamides from 2,2′-bibenzoic acid and aromatic diamines. J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 995–1000

    Article  CAS  Google Scholar 

  13. Cimecioglu, A. L.; Weiss, R. A. Synthesis and properties of polyamides of 3,3′-dimethyl naphthidine and its model compounds. J. Polym. Sci. Part A.: Polym. Chem. 1992, 30, 1051–1060

    Article  CAS  Google Scholar 

  14. Yang, C. P.; Lin, J. H. Preparation and properties of aromatic polyamides and polyimides derived from 3,3-bis[4-(4-amino phenoxy)phenyl]phthalide. J. Polym. Sci. Part A: Polym. Chem. 1994, 32, 423–433

    Article  CAS  Google Scholar 

  15. Jadhav, J. Y.; Preston, J.; Krigbaum, W. R. Aromatic rigid chain copolymers. 1. Synthesis, structure and solubility of phenyl-substituted para-linked aromatic random copolyamides. J. Polym. Sci. Part A: Polym. Chem. 1989, 27, 1175–1195

    CAS  Google Scholar 

  16. Delaviz, Y.; Gungor, A.; MacGrath, J. E.; Gibson, H. W. Soluble phosphine oxide containing aromatic polyamides. Polymer 1993, 34, 210–213

    Article  CAS  Google Scholar 

  17. Takayangi, M.; Katoyse, T. n-substituted poly(p-phenylene terephthalamide). J. Polym. Sci. Part A: Polym. Chem. 1981, 19, 1133–1145

    Google Scholar 

  18. Itamura, S.; Yamada, M.; Tamura, S.; Matsumoto, T.; Kurosaki, T. Soluble polyimides with polyalicyclic structure. 1.Polyimides from bicyclo [2.2.2]oct-7-ene-2-exo,3-exo,5-exo,6-exo-tetracarboxylic 2,3:5,6-dianhydrides. Macromolecules 1993, 26, 3490–3493

    Article  CAS  Google Scholar 

  19. Bottino, F. A.; Pasquale, G. D.; Pollicino, A.; Scalia, L. Synthesis and characterization of new polyamides containing 6,6′ methylenediquinoline units. Polymer 1998, 39(20), 4949–4954

    Article  CAS  Google Scholar 

  20. Morgan, P. "Condensation polymers by interfacial and solution method", John Wiley & Sons, New York, 1965

    Google Scholar 

  21. Morgan, P. W.; Kwolek, S. L. Polyamides from phenylenediamines and aliphatic diacids. Macromolecules 1975, 8(2), 104–111

    Article  CAS  Google Scholar 

  22. Aly, K. I.; Hussein, M. A. Synthesis, characterization and corrosion inhibitive properties of new thiazole based polyamides containing diarylidenecyclohexanone moiety. Chinese J. Polym. Sci. 2015, 33(1), 1–13

    Article  CAS  Google Scholar 

  23. Liou, G. S.; Maruyama, M.; Kakimoto, M. A.; Imai, Y. Preparation and properties of aromatic polyamides from 2,2′-bis(p-aminophenoxy) biphenyl or 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl and aromatic dicarboxylic acids. J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 2499–2506

    Article  CAS  Google Scholar 

  24. Park, S. H.; Lee, J. W.; Suh, D. H.; Ju, S. Y. Synthesis and characteristics of novel polyamides having pendent V-phenyl imide groups. J. Macromol. Sci. A: Pure Appl. Chem. 2001, 38, 513–525

    Article  Google Scholar 

  25. Sarjadi, M. S.; Yi, H.; Iraqi, A.; Lidzey, D. G. Theinothiophene units properties on the carbazole-based polymers for organic solar cell devices. Malaysian J. Analyt. Sci. 2015, 19(6), 1205–1217

    Google Scholar 

  26. Diez, A. S.; Saidman, S.; Garay, R. O. Synthesis of a theinothiophene conjugated polymer. Molecules 2000, 5(3), 555–556

    Article  CAS  Google Scholar 

  27. Aly, K. I.; Abdel Rahman, M. A.; Hussein, M. A. New polymer syntheses Part 53. Novel polyamides of diarylidenecycloalkanone containing azo groups in the polymer backbone: synthesis and characterization. Int. J. Polym. Mater. 2010, 59, 553–569

    CAS  Google Scholar 

  28. Chao, D.; He, L.; Berda, E. B.; Wang, S.; Jia, X.; Wang, C. Multifunction hyperbranched polyamide: synthesis and properties. Polymer 2013, 54, 3223–3229

    Article  CAS  Google Scholar 

  29. Faghihi, K. New polyamides based on bis (p-amidobenzoic acid)-p-phenylene diacrylic acid and hydantoin derivatives: synthesis and characterization. Turk. J. Chem. 2008, 32, 75–86

    CAS  Google Scholar 

  30. Bair, T. I.; Morgan, P. W.; Killian, F. L. Poly(1,4-phenyleneterephthalamides). polymerization and novel liquidcrystalline solutions. Macromolecules 1977, 10(6), 1396–1400

    Article  CAS  Google Scholar 

  31. Vogel, A. I. “Vogel’s textbook of practical organic Chemistry”. London, Longman Green 1, 1967, ppp. 464

    Google Scholar 

  32. Aly, K. I. New polymer syntheses XXVIII. Synthesis and thermal behavior of new organometallic polyketones and copolyketones based on diferrocenylidenecyclohexanone. J. Appl. Polym. Sci. 2004, 94, 1440–1448

    CAS  Google Scholar 

  33. Aly, K. I.; Kandeel, M. M. New Polymer Syntheses IV. Synthesis and characterization of new polyamides containing bis-benzthiazolyl sulphone units in the main chain. High perform. Polym. 1996, 8, 307–314

    CAS  Google Scholar 

  34. El-Shafei, A. K.; Abdel-Ghany, H. A.; Sultan, A. A.; El-Saghier, A. M. M. Synthesis of thieno (2,3-b) thiophene and related structures. Phosphorus, Sulfur, Silicon Relat. Elem. 1992, 73, 15–25

    Article  CAS  Google Scholar 

  35. Comel, A.; Kirsch, G. Efficient one pot preparation of variously substituted thieno[2,3-6]thiophene. J. Heterocycl. Chem. 2001, 38, 1167–1171

    Article  CAS  Google Scholar 

  36. Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the V-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci., Part A: Polym. Chem. 1975, 13, 1373–1380

    CAS  Google Scholar 

  37. Holmer, D. A.; Pickett, O. A.; Saunders, J. H. Melt polycondensation of 4,4′-diaminodiphenylmethane with aliphatic dibasic acids. J. Polym. Sci., Part A: Polym. Chem. 1972, 10, 1547–1552

    Article  CAS  Google Scholar 

  38. Li, C. H.; Chang, T. C. Studies on thermotropic liquid crystalline polymers Part II. Synthesis and properties of poly (azomethine-ether). Eur. Polym. J. 1991, 27(1), 35–39

    CAS  Google Scholar 

  39. Yang, R. X.; Wang, T. T.; Deng, W. Q. Extraordinary capability for water treatment achieved by a perfluorous conjugated microporous polymer. Sci. Rep. 2015

    Google Scholar 

  40. Aly, K. I. New polymer syntheses VIII. Synthesis, characterization and morphology of new unsaturated copolyesters based on dibenzylidenecycloalkanones. Polym. Int. 1998, 47, 483–490

    Article  CAS  Google Scholar 

  41. Kim, S.; Pearce, E. M.; Kwei, T. K. Synthesis and degradation of cyano-containing aramids. Polym. Adv. Technol. 1990, 1, 49–73

    Article  Google Scholar 

  42. El-Sayed, A. R.; Shaker, A. M.; Abd El-Lateef, H. M. Corrosion inhibition of tin, indium and tin-indium alloys by adenine or adenosine in hydrochloric acid solution. Corros. Sci. 2010, 52, 72–81

    Article  CAS  Google Scholar 

  43. Abd El-Lateef, H. M. Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid Solutions. Corros. Sci. 2015, 92, 104–117

    Article  CAS  Google Scholar 

  44. Al-Sabagh, A. M.; Nasser, N. M.; El-Azabawy, O. E.; El-Tabey, A. E. Corrosion inhibition behavior of new synthesized nonionic surfactants based on amino acid on carbon steel in acid media. J. Mol. Liq. 2016, 219, 1078–1088

    Article  CAS  Google Scholar 

  45. Kosari, A.; Moayed, M. H.; Davoodi, A.; Parvizi, R.; Momeni, M.; Eshghi, H.; Moradi, H. Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corros. Sci. 2014, 78, 138–150

    Article  CAS  Google Scholar 

  46. Yadav, D. K.; Quraishi, M. A. Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind. Eng. Chem. Res. 2012, 51, 8194–8210

    Article  CAS  Google Scholar 

  47. Morad, M. S. Corrosion inhibition of mild steel in sulfamic acid solution by S-containing amino acids. J. Appl. Electrochem. 2008, 38, 1509–1518

    Article  CAS  Google Scholar 

  48. Abd El-Lateef, H. M.; Abu-Dief, A. M.; El-Gendy, B. E. M. Investigation of adsorption and inhibition effects of some novel compounds towards mild steel in H2SO4 solution: Electrochemical and theoretical quantum studies. J. Electroanal. Chem. 2015, 758, 135–147

    Article  CAS  Google Scholar 

  49. Abd El-Lateef, H. M.; Abu-Dief, A. M.; Abdel-Rahman, L. H.; Sanudo, E. C.; Aliaga-Alcalde, N. Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. J. Electroanal. Chem. 2015, 743, 120–133

    Article  CAS  Google Scholar 

  50. Mazumder, M. A. J.; Nazal, M. K.; Faiz, M.; Ali, Sh. A. Midazolines containing single-, twin-and triple-tailed hydrophobes and hydrophilic pendants (CH2CH2NH)« as inhibitors of mild steel corrosion in CO2-0.5 M NaCl. RSC Adv. 2016, 6, 12348–12362

    Article  CAS  Google Scholar 

  51. Ansari, K. R.; Quraishi, M. A. Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4. Corros. Sci. 2015, 95, 62–70

    Article  CAS  Google Scholar 

  52. Atta, A. M.; El-Azabawy, O. E.; Ismail, H. S.; Hegazy, M. A. Novel dispersed magnetite core-shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium. Corros. Sci. 2011, 53, 1680–1689

    Article  CAS  Google Scholar 

  53. Prabhu, R. A.; Venkatesha, T. V.; Shanbhag, A. V.; Kulkarni, G. M.; Kalkhambkar, R. G. Inhibition effects of some Schiffs bases on the corrosion of mild steel in hydrochloric acid solution. Corros. Sci. 2008, 50, 3356–3362

    Article  CAS  Google Scholar 

  54. Elayyachy, M.; El Idrissi, A.; Hammouti, B. New thiocompounds as corrosion inhibitor for steel in 1 M HCl. Corros. Sci. 2006, 48, 2470–2479

    Article  CAS  Google Scholar 

  55. Singh, A.; Lin, Y.; Obot, I. B.; Ebenso, E. E.; Ansari, K. R.; Quraishi, M. A. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor. Appl. Surf. Sci. 2015, 356, 341–347

    Article  CAS  Google Scholar 

  56. Roy, P.; Karfa, P.; Adhikar, U.; Sukul, D. Corrosion inhibition of mild steel in acidic medium by Polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism. Corros. Sci. 2014, 88, 246–253

    Article  CAS  Google Scholar 

  57. Gopi, D.; Karthikeyana, P.; Kavithac, L.; Surendiran, M. Development of poly (3,4-ethylenedioxythiophene-co-indole-5-carboxylic acid) co-polymer coatings on passivated low-nickel stainless steel for enhanced corrosion resistance in the sulphuric acid medium. Appl. Surf. Sci. 2015, 357, 122–130

    Article  CAS  Google Scholar 

  58. Abd El-Lateef, H. M.; Tantawy, A. H. Synthesis and evaluation of novel series of Schiff base cationic surfactants as corrosion inhibitors for carbon steel in acidic/chloride media. RSC Adv. 2016, 6, 8681–8700

    Article  CAS  Google Scholar 

  59. Abd El-Lateef, H. M.; Tantawy, A. H.; Abdelhamid, A. A. Novel quaternary ammonium-based cationic surfactants: Synthesis, surface activity and evalution as corrosion inhibitors for C1018 carbon steel in acidic chloride solution. J. Surfact. Deterg. 2017, 20, 735–753

    Article  CAS  Google Scholar 

  60. Abd El-Lateef, H. M.; Soliman, K. A.; Tantawy, A. H. Novel synthesized Schiff base-based cationic Gemini surfactants: Electrochemical investigation, theoretical modeling and applicability as biodegradable inhibitors for mild steel against acidic corrosion. J. Mol. Liq. 2017, 232, 478–498

    Article  CAS  Google Scholar 

  61. Abd El-Lateef, H. M.; Elremaily, M. A. A. Divinyl sulfone cross-linked β-cyclodextrin polymer as new and effective corrosion inhibitor for Zn anode in 3.5 M KOH. Trans. Indian Inst. Met. 2016, 69(9), 1783–1792.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr H. Moustafa.

Electronic supplementary material

10118_2018_2101_MOESM1_ESM.pdf

New Polymer Syntheses Part 60*: A facile Synthetic Route to Polyamides-based on Thieno[2,3-b]thiophene and Their Corrosion Inhibition Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, K.I., Moustafa, A.H., Ahmed, E.K. et al. New Polymer Syntheses Part 60: A Facile Synthetic Route to Polyamides Based on Thieno[2,3-b]thiophene and Their Corrosion Inhibition Behavior. Chin J Polym Sci 36, 835–847 (2018). https://doi.org/10.1007/s10118-018-2101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2101-3

Keywords

Navigation