Skip to main content
Log in

Discrete convexity and polynomial solvability in minimum 0-extension problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

A \(0\)-extension of graph \(\varGamma \) is a metric \(d\) on a set \(V\) containing the vertex set \(V_{\varGamma }\) of \(\varGamma \) such that \(d\) extends the shortest path metric of \(\varGamma \) and for all \(x \in V\) there exists a vertex \(s\) in \(\varGamma \) with \(d(x,s) = 0\). The minimum \(0\)-extension problem 0-Ext \([\varGamma ]\) on \(\varGamma \) is: given a set \(V \supseteq V_{\varGamma }\) and a nonnegative cost function \(c\) defined on the set of all pairs of \(V\), find a \(0\)-extension \(d\) of \(\varGamma \) with \(\sum _{xy}c(xy) d(x,y)\) minimum. The \(0\)-extension problem generalizes a number of basic combinatorial optimization problems, such as minimum \((s,t)\)-cut problem and multiway cut problem. Karzanov proved the polynomial solvability of 0-Ext \([\varGamma ]\) for a certain large class of modular graphs \(\varGamma \), and raised the question: What are the graphs \(\varGamma \) for which 0-Ext \([\varGamma ]\) can be solved in polynomial time? He also proved that 0-Ext \([\varGamma ]\) is NP-hard if \(\varGamma \) is not modular or not orientable (in a certain sense). In this paper, we prove the converse: if \(\varGamma \) is orientable and modular, then 0-Ext \([\varGamma ]\) can be solved in polynomial time. This completes the classification of graphs \(\varGamma \) for which 0-Ext \([\varGamma ]\) is tractable. To prove our main result, we develop a theory of discrete convex functions on orientable modular graphs, analogous to discrete convex analysis by Murota, and utilize a recent result of Thapper and Živný on valued CSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bandelt, H.-J.: Networks with condorcet solutions. Eur. J. Oper. Res. 20, 314–326 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandelt, H.-J.: Hereditary modular graphs. Combinatorica 8, 149–157 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bandelt, H.-J., Chepoi, V.: Metric graph theory and geometry: a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.). Surveys on Discrete and Computational Geometry: Twenty Years Later, pp. 49–86. American Mathematical Society, Providence (2008)

  4. Bandelt, H.-J., Chepoi, V., Karzanov, A.V.: A characterization of minimizable metrics in the multifacility location problem. Eur. J. Comb. 21, 715–725 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bandelt, H.-J., van de Vel, M., Verheul, E.: Modular interval spaces. Mathematische Nachrichten 163, 177–201 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Birkhoff, G.: Lattice Theory. American Mathematical Society, New York, 1940, 3rd edn. American Mathematical Society, Providence (1967)

  7. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44, 201–236 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bouchet, A.: Multimatroids. I. Coverings by independent sets. SIAM J. Discrete Math. 10, 626–646 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chandrasekaran, R., Kabadi, S.N.: Pseudomatroids. Discrete Math. 71, 205–217 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chalopin, J., Chepoi, V., Hirai, H., Osajda, D.: Weakly modular graphs and nonnegative curvature, Preprint (2014). arXiv:1409.3892

  11. Chepoi, V.: Classification of graphs by means of metric triangles. Metody Diskretnogo Analiza 49, 75–93 (1989). (in Russian)

    MathSciNet  Google Scholar 

  12. Chepoi, V.: A multifacility location problem on median spaces. Discrete Appl. Math. 64, 1–29 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chepoi, V.: Graphs of some \(\text{ CAT }(0)\) complexes. Adv. Appl. Math. 24, 125–179 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23, 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dress, A.W.M., Scharlau, R.: Gated sets in metric spaces. Aequationes Mathematicae 34, 112–120 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  17. Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation theorems. Mathematical Programming, Series A 88, 129–146 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fujishige, S., Tanigawa, S.: A min–max theorem for transversal submodular functions and its implications. SIAM J. Discrete Math (to appear)

  19. Fujishige, S., Tanigawa, S., Yoshida, Y.: Generalized skew bisubmodularity: a characterization and a min-max theorem. Discrete Optim. 12, 1–9 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  21. Hirai, H.: Tight spans of distances and the dual fractionality of undirected multiflow problems. J. Comb. Theory Ser. B 99, 843–868 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hirai, H.: Folder complexes and multiflow combinatorial dualities. SIAM J. Discrete Math. 25, 1119–1143 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hirai, H.: Half-integrality of node-capacitated multiflows and tree-shaped facility locations on trees. Math. Program. Ser. A 137, 503–530 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hirai, H.: The maximum multiflow problems with bounded fractionality. Math. Oper. Res. 39, 60–104 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hirai, H.: Discrete convexity for multiflows and 0-extensions. In: Proceeding of 8th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, pp. 209–223 (2013)

  26. Hirai, H.: L-convexity on graph structures (in preparation)

  27. Huber, A., Kolmogorov, V.: Towards minimizing \(k\)-submodular functions. In: Proceedings of the 2nd International Symposium on Combinatorial Optimization (ISCO’12), LNCS 7422, Springer, Berlin, pp. 451–462 (2012)

  28. Huber, A., Krokhin, A.: Oracle tractability of skew bisubmodular functions. SIAM J. Discrete Math. 28, 1828–1837 (2014)

  29. Huber, A., Krokhin, A., Powell, R.: Skew bisubmodularity and valued CSPs. SIAM J. Comput. 43, 1064–1084 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48, 761–777 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Karzanov, A.V.: Polyhedra related to undirected multicommodity flows. Linear Algebra Appl. 114(115), 293–328 (1989)

    Article  MathSciNet  Google Scholar 

  32. Karzanov, A.V.: Minimum \(0\)-extensions of graph metrics. Eur. J. Comb. 19, 71–101 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Karzanov, A.V.: Metrics with finite sets of primitive extensions. Ann. Comb. 2, 211–241 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Karzanov, A.V.: One more well-solved case of the multifacility location problem. Discrete Optim. 1, 51–66 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Karzanov, A.V.: Hard cases of the multifacility location problem. Discrete Appl. Math. 143, 368–373 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kleinberg, J., Tardos, É.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. J. ACM 49, 616–639 (2002)

    Article  MathSciNet  Google Scholar 

  37. Kolen, A.W.J.: Tree Network and Planar Rectilinear Location Theory, CWI Tract 25. Center for Mathematics and Computer Science, Amsterdam (1986)

    Google Scholar 

  38. Kolmogorov, V.: Submodularity on a tree: unifying L\(^\natural \)-convex and bisubmodular functions. In: Proceedings of the 36th International Symposium on Mathematical Foundations of Computer Science (MFCS’11), LNCS 6907, Springer, Berlin, pp. 400–411 (2011)

  39. Kolmogorov, V.: The power of linear programming for finite-valued CSPs: a constructive characterization. In: Proceedings of the 40th International Colloquium, ICALP 2013, LNCS 7965, pp. 625–636 (2013)

  40. Kolmogorov, V., Shioura, A.: New algorithms for convex cost tension problem with application to computer vision. Discrete Optim. 6, 378–393 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kolmogorov, V., Thapper, J., Živný, S.: The power of linear programming for general-valued CSPs, Preprint (2013). arXiv:1311.4219

  42. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. J. ACM 60. Article No. 10 (2013)

  43. Kuivinen, F.: On the complexity of submodular function minimisation on diamonds. Discrete Optim. 8, 459–477 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming—The State of the Art, pp. 235–257. Springer, Berlin (1983)

    Chapter  Google Scholar 

  45. Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

    MATH  MathSciNet  Google Scholar 

  46. Murota, K.: Algorithms in discrete convex analysis. IEICE Trans. Syst. Inf. E83-D, 344–352 (2000)

  47. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  48. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  49. Murota, K., Tamura, A.: Proximity theorems of discrete convex functions. Math. Program. Ser. A 99, 539–562 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  50. Nakamura, M.: A characterization of greedy sets: universal polymatroids (I). Sci. Pap. Coll. Arts Sci. Univ. Tokyo 38, 155–167 (1988)

    Google Scholar 

  51. Picard, J.C., Ratliff, D.H.: A cut approach to the rectilinear distance facility location problem. Oper. Res. 26, 422–433 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  52. Qi, L.: Directed submodularity, ditroids and directed submodular flows. Math. Program. 42, 579–599 (1988)

    Article  MATH  Google Scholar 

  53. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95) (1995)

  54. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory Ser. B 80, 346–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  55. Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks I, II. Manag. Sci. 29, 498–511 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  56. Thapper, J., Živný, S.: The power of linear programming for valued CSPs. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’12), pp. 669–678 (2012)

  57. Thapper, J., Živný, S.: The complexity of finite-valued CSPs. In: Proceedings of the 45th ACM Symposium on the Theory of Computing (STOC’13), pp. 695–704 (2013)

  58. van de Vel, M.L.J.: Theory of Convex Structures. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  59. Živný, S.: The Complexity of Valued Constraint Satisfaction Problems. Springer, Heidelberg (2012)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank the referee for helpful comments, and thank Kazuo Murota for careful reading and numerous helpful comments, Kei Kimura for discussion on Valued-CSP, Satoru Iwata for communicating the paper [43] of Kuivinen, Akiyoshi Shioura for the paper [38] of Kolmogorov, and Satoru Fujishige for the paper [27] of Huber-Kolmogorov. This research is partially supported by the Aihara Project, the FIRST program from JSPS, by Global COE Program “The research and training center for new development in mathematics” from MEXT, and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hirai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirai, H. Discrete convexity and polynomial solvability in minimum 0-extension problems. Math. Program. 155, 1–55 (2016). https://doi.org/10.1007/s10107-014-0824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0824-7

Mathematics Subject Classification

Navigation