Skip to main content

Abstract

In “continuous” optimization convex functions play a central role. Besides elementary tools like differentiation, various methods for finding the minimum of a convex function constitute the main body of nonlinear optimization. But even linear programming may be viewed as the optimization of very special (linear) objective functions over very special convex domains (polyhedra). There are several reasons for this popularity of convex functions:

  • Convex functions occur in many mathematical models in economy, engineering, and other sciencies. Convexity is a very natural property of various functions and domains occuring in such models; quite often the only non-trivial property which can be stated in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. Aigner, T. A. Dowling (1971), Matching theory for combinatorial geometries, Trans. Amer. Math. Soc. 158, 231–245.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Choquet (1955), Theory of capacities, Ann. Inst. Fournier Grenoble 5, 131–295.

    Article  MathSciNet  Google Scholar 

  • H. Crapo (1965), Single-element extensions of matroids, J. Res. Nat. Bur. Stand. 69 B, 55–65.

    Google Scholar 

  • H. Crapo (1979), Structural rigidity, Structural Topology 1, 26–45.

    MathSciNet  MATH  Google Scholar 

  • R. P. Dilworth (1944), Dependence relations in a semimodular lattice, Duke Math. J. 11, 575–586.

    Article  MathSciNet  MATH  Google Scholar 

  • F. D. J. Dunstan (1976), Matroids and submodular functions, Quart. J. Math. Oxford 27, 339–348.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Edmonds (1970), Submodular functions, matroids, and certain polyhedra, in: Combinatorial Structures and their Applications (eds. R. Guy, H. Hanani, N. Sauer, J. Schönheim) Gordon and Breach, 69–87.

    Google Scholar 

  • J. Edmonds, D. R. Fulkerson (1965), Transversals and matroid partition, J. Res. Nat. Bur. Stand. 69 B, 147–153.

    Google Scholar 

  • J. Edmonds, R. Giles (1977), A min-max relation on submodular functions on graphs, Annals of Discrete Math. 1, 185–204.

    Article  MathSciNet  Google Scholar 

  • M. L. Fisher, G. L. Nemhauser, L. A. Wolsey (1978), Analysis of approximations for maximizing a submodular setfunction II, Math. Prog. Study 8, 73–87.

    MathSciNet  Google Scholar 

  • A. Frank (1982), An algorithm for submodular functions on graphs, Annals of Discrete Math. 16, 97–120.

    MATH  Google Scholar 

  • A. Frank (1980), On the orientation of graphs, J. Comb. Theory B28, 251–261.

    Article  MATH  Google Scholar 

  • A. Frank (1979), Kernel systems of directed graphs, Acta Sci. Math. Univ. Szeged 41, 63–76.

    MATH  Google Scholar 

  • H. Gröflin, A. J. Hoffman (1981), On matroid intersections, Combinatorica 1, 43–47.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Grötschel, L. Lovász, A. Schrijver (1981), The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1, 169–197.

    Article  MathSciNet  MATH  Google Scholar 

  • P. M. Jensen, B. Korte (1978), Complexity of matroid property algorithms, Rept. No. 7124-OR, Inst. Ökon. Oper. Res. Univ. Bonn.

    Google Scholar 

  • T. Helgason (1974), Aspects of the theory of hypermatroids, in: Hypergraph Seminar (eds. C. Berge, D. K. Ray-Chaudhuri), Lecture Notes in Math. 411, Springer, 191– 214.

    Google Scholar 

  • D. B. Iudin, A. S. Nemirovskii (1976), Informational complexity and effective methods of solution for convex extremal problems, Ekon. i Mat. Met. 12, 357–369; Matekon 13 (3), 24–45.

    Google Scholar 

  • E. L. Lawler, C. U. Martell (1980), Computing maximal “polymatroidal” network flows, Res. Rep. UCB/ERL M80 /52.

    Google Scholar 

  • E. L. Lawler, Po Tong (1982), Lecture at the Conference on Combinatorics and Graph Theory, Univ. of Waterloo.

    Google Scholar 

  • L. Lovász (1977), Flats in matroids and geometric graphs, in: Combinatorial Surveys, (ed. P. Cameron ), Acad. Press, 45–86.

    Google Scholar 

  • L. Lovász (1981), The matroid matching problem, in: Algebraic Methods in Graph Theory (eds. L. Lovasz, V. T. Sos ), North-Holland, 495–517.

    Google Scholar 

  • L. Lovász, Y. Yemini (1982), On generic rigidity in the plane, SIAM J. on Alg. Discr. Meth. 3, 91–99.

    Article  MATH  Google Scholar 

  • C. J. H. McDiarmid (1975), Rado’s Theorem for polymatroids, Math. Proc. Cambridge Phil. Soc. 78, 263–281.

    Article  MathSciNet  MATH  Google Scholar 

  • J. H. Mason (1977), Matroids as the study of geometrical configurations, in: Higher Combinatorics (ed. M. Aigner) Reidel, 133–176.

    Google Scholar 

  • J. H. Mason (1981), Glueing matroids together: a study of Dilworth truncations and matroid analogues of exterior and symmetric powers, in: Algebraic Methods in Graph Theory (eds. L. Lovasz, V. T. Sos ), North-Holland, 519–561.

    Google Scholar 

  • H. Q. Nguyen (1978), Semimodular functions and combinatorial geometries, Trans. AMS 238, 355–383.

    Article  MATH  Google Scholar 

  • O. Ore (1955), Graphs and matching theorems, Duke Math. J. 22, 625–639.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Welsh (1976), Matroid Theory, Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lovász, L. (1983). Submodular functions and convexity. In: Bachem, A., Korte, B., Grötschel, M. (eds) Mathematical Programming The State of the Art. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68874-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68874-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68876-8

  • Online ISBN: 978-3-642-68874-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics