Skip to main content
Log in

Proximity theorems of discrete convex functions

  • Published:
Mathematical Programming Submit manuscript

Abstract.

A proximity theorem is a statement that, given an optimization problem and its relaxation, an optimal solution to the original problem exists in a certain neighborhood of a solution to the relaxation. Proximity theorems have been used successfully, for example, in designing efficient algorithms for discrete resource allocation problems. After reviewing the recent results for L-convex and M-convex functions, this paper establishes proximity theorems for larger classes of discrete convex functions, L2-convex functions and M2-convex functions, that are relevant to the polymatroid intersection problem and the submodular flow problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldick, R.: Refined proximity and sensitivity results in linearly constrained convex separable integer programming. Linear Algebra Appl. 226/228, 389–407 (1995)

    Google Scholar 

  2. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Program. 34, 251–264 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Ann. Discrete Math. 1, 185–204 (1977)

    MATH  Google Scholar 

  4. Favati, P., Tardella, F.: Convexity in nonlinear integer programming. Ricerca Operativa 53, 3–44 (1990)

    Google Scholar 

  5. Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Mathematics 47, North-Holland, Amsterdam, 1991

  6. Fujishige, S., Katoh, N., Ichimori, T.: The fair resource allocation problem with submodular constraints. Math. Oper. Res. 13, 164–173 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation theorems. Math. Program. 88, 129–146 (2000)

    Article  MathSciNet  Google Scholar 

  8. Granot, F., Skorin-Kapov, J.: Some proximity and sensitivity results in quadratic integer programming. Math. Program. 47, 259–268 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Hochbaum, D.S.: Lower and upper bounds for the allocation problem and other nonlinear optimization problems. Math. Oper. Res. 19, 390–409 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization. J. Assoc. Comput. Mach. 37, 843–862 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. The MIT Press, Cambridge, 1988

  12. Ibaraki, T., Katoh, N.: Resource Allocation Problems. In: Du D.-Z., Pardalos P. M. (eds), Handbook of Combinatorial Optimization (Vol. 2), pp. 159–260. Kluwer Academic Publishers, Boston, 1998

  13. Iwata, S.: Oral presentation at Workshop on Matroids, Matching, and Extensions. University of Waterloo, December, 1999

  14. Iwata, S.: A fully combinatorial algorithm for submodular function minimization. J. Combin. Theory Ser. B 84, 203–212 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. Assoc. Comput. Mach. 48, 761–777 (2001)

    Article  Google Scholar 

  16. Iwata, S., Shigeno, M.: Conjugate scaling algorithm for Fenchel-type duality in discrete convex optimization. SIAM J. Optim. 13, 204–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moriguchi, S., Murota, K., Shioura, A.: Scaling algorithms for M-convex function minimization. IEICE Trans. Fundamentals, E85-A, 922–929 (2002)

    Google Scholar 

  18. Moriguchi, S., Shioura, A.: On Hochbaum’s scaling algorithm for the general resource allocation problem. Research Report B-377, Tokyo Institute of Technology, 2002

  19. Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

    Article  MathSciNet  Google Scholar 

  21. Murota, K.: Submodular flow problem with a nonseparable cost function. Combinatorica 19, 87–109 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Murota, K.: Matrices and Matroids for Systems Analysis. Springer-Verlag, Berlin, 2000

  23. Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia, 2003

  24. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Murota, K., Shioura, A.: Relationship of M-/L-convex functions with discrete convex functions by Miller and by Favati–Tardella. Discrete Appl. Math. 115, 151–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Murota, K., Shioura, A.: Quasi M-convex and L-convex functions: Quasi-convexity in discrete optimization. Discrete Appl. Math. To appear

  27. Murota, K., Tamura, A.: Proximity theorems of discrete convex functions. RIMS Preprint 1358, Kyoto University, 2002

  28. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80, 346–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shioura, A.: Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem. Discrete Appl. Math. To appear

  30. Tamura, A.: Coordinatewise domain scaling algorithm for M-convex function minimization. In: Cook W.J., Schulz A.S. (eds), Proceedings of the Ninth Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science Vol. 2337, pp. 21–35. Springer-Verlag, Berlin, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihisa Tamura.

Additional information

Mathematics Subject Classification (2000): 90C27, 05B35

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murota, K., Tamura, A. Proximity theorems of discrete convex functions. Math. Program., Ser. A 99, 539–562 (2004). https://doi.org/10.1007/s10107-003-0466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0466-7

Key words

Navigation