Skip to main content
Log in

An exact Jacobian SDP relaxation for polynomial optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Given polynomials f (x), g i (x), h j (x), we study how to minimize f (x) on the set

$$S = \left\{ x \in \mathbb{R}^n:\, h_1(x) = \cdots = h_{m_1}(x) = 0,\\ g_1(x)\geq 0, \ldots, g_{m_2}(x) \geq 0 \right\}.$$

Let f min be the minimum of f on S. Suppose S is nonsingular and f min is achievable on S, which are true generically. This paper proposes a new type semidefinite programming (SDP) relaxation which is the first one for solving this problem exactly. First, we construct new polynomials \({\varphi_1, \ldots, \varphi_r}\) , by using the Jacobian of f, h i , g j , such that the above problem is equivalent to

$$\begin{gathered}\underset{x\in\mathbb{R}^n}{\min} f(x) \hfill \\ \, \, {\rm s.t.}\; h_i(x) = 0, \, \varphi_j(x) = 0, \, 1\leq i \leq m_1, 1 \leq j \leq r, \hfill \\ \quad \, \, \, g_1(x)^{\nu_1}\cdots g_{m_2}(x)^{\nu_{m_2}}\geq 0, \, \quad\forall\, \nu \,\in \{0,1\}^{m_2} .\hfill \end{gathered}$$

Second, we prove that for all N big enough, the standard N-th order Lasserre’s SDP relaxation is exact for solving this equivalent problem, that is, its optimal value is equal to f min. Some variations and examples are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  2. Bruns W., Schwänzl R.: The number of equations defining a determinantal variety. Bull. Lond. Math. Soc. 22(5), 439–445 (1990)

    Article  MATH  Google Scholar 

  3. Bruns W., Vetter U.: Determinantal Rings. Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988)

    Google Scholar 

  4. Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Undergraduate Texts in Mathematics. Springer, New York (1997)

    Google Scholar 

  5. Cox D., Little J., O’Shea D.: Using Algebraic geometry. Graduate Texts in Mathematics, vol. 185. Springer, New York (1998)

    Google Scholar 

  6. Curto R., Fialkow L.: The truncated complex K-moment problem. Trans. Am. Math. Soc. 352, 2825–2855 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demmel J., Nie J., Powers V.: Representations of positive polynomials on non-compact semialgebraic sets via KKT ideals. J. Pure Appl. Algebra 209(1), 189–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gel’fand I., Kapranov M., Zelevinsky A.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory and Applications. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  9. Guo, F., El Din, M.S., Zhi, L.: Global optimization of polynomials using generalized critical values and sums of squares. In: ISSAC’2010 Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp. 107–114

  10. Ha H., Pham T.: Global optimization of polynomials using the truncated tangency variety and sums of squares. SIAM J. Optim. 19(2), 941–951 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harris J.: Algebraic Geometry, a First Course. Springer, Berlin (1992)

    MATH  Google Scholar 

  12. He S., Luo Z., Nie J., Zhang S.: Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization. SIAM J. Optim. 19(2), 503–523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henrion D., Lasserre J.: Detecting global optimality and extracting solutions in GloptiPoly. In: Henrion, D., Garulli, A. (eds) Positive Polynomials in Control. Lecture Notes on Control and Information Sciences, vol. 312, pp. 293–310. Springer, Berlin (2005)

    Google Scholar 

  14. Henrion D., Lasserre J., Loefberg J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hiep, D.T.: Representations of non-negative polynomials via the critical ideals. Preprint (2010). http://www.maths.manchester.ac.uk/raag/index.php?preprint=0300

  16. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marshall M.: Representation of non-negative polynomials, degree bounds and applications to optimization. Can. J. Math. 61(1), 205–221 (2009)

    Article  MATH  Google Scholar 

  18. Nie J., Demmel J., Sturmfels B.: Minimizing polynomials via sum of squares over the gradient ideal. Math. Prog. Ser. A 106(3), 587–606 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nie J., Schweighofer M.: On the complexity of putinar’s positivstellensatz. J. Complex. 23, 135–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nie, J.: Discriminants and nonnegative polynomials. J. Symb. Comput. (to appear)

  21. Putinar M.: Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J. 42, 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reznick B.: Some concrete aspects of Hilbert’s 17th problem. Contemp. Math. 253, 251–272 (2000)

    Article  MathSciNet  Google Scholar 

  23. Scheiderer C.: Sums of squares of regular functions on real algebraic varieties. Trans. Am. Math. Soc. 352, 1039–1069 (1999)

    Article  MathSciNet  Google Scholar 

  24. Schmüdgen K.: The K-moment problem for compact semialgebraic sets. Math. Ann. 289, 203–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schweighofer M.: On the complexity of Schmüdgen’s Positivstellensatz. J. Complex. 20, 529–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schweighofer M.: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17(3), 920–942 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stengle G.: A Nullstellensatz and Positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1974)

    Article  MathSciNet  Google Scholar 

  28. Sturmfels B.: Solving systems of polynomial equations. In: CBMS Regional Conference Series in Mathematics, vol. 97. American Mathematical Society, Providence (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawang Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, J. An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137, 225–255 (2013). https://doi.org/10.1007/s10107-011-0489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0489-4

Keywords

Mathematics Subject Classification (2000)

Navigation