Skip to main content
Log in

Nonlinear error bounds for lower semicontinuous functions on metric spaces

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

As a development of the theory of linear error bounds for lower semicontinuous functions defined on complete metric spaces, introduced in Azé et al. (Nonlinear Anal 49, 643–670, 2002) and refined in Azé and Corvellec (ESAIM Control Optim Calc Var 10, 409–425, 2004), we propose a similar approach to nonlinear error bounds, based on the notion of strong slope, the variational principle, and the change-of-metric principle, the latter allowing to obtain sharp estimates for such error bounds through a reduction to the linear case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender A., Cominetti R. and Crouzeix J.-P. (1993). Convex functions with unbounded level sets. SIAM J. Optim. 3: 669–687

    Article  MathSciNet  MATH  Google Scholar 

  2. Auslender A. and Crouzeix J.-P. (1989). Well behaved asymptotical convex functions. Ann. Inst. H. Poincaré, Anal. Non Linéaire 6: 101–121

    MathSciNet  Google Scholar 

  3. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities, Springer Monographs in Mathematics. Springer, New York, 2003

  4. Azé D. and Corvellec J.-N. (2002). On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12: 913–927

    Article  MathSciNet  MATH  Google Scholar 

  5. Azé D. and Corvellec J.-N. (2004). Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10: 409–425

    Article  MathSciNet  MATH  Google Scholar 

  6. Azé D. and Corvellec J.-N. (2006). Variational methods in classical open mapping theorems. J. Convex Anal. 13: 477–488

    MathSciNet  MATH  Google Scholar 

  7. Azé D. and Corvellec J.-N. (2006). A variational method in fixed point results with inwardness conditions. Proc. Am. Math. Soc. 134: 3577–3583

    Article  MATH  Google Scholar 

  8. Azé D., Corvellec J.-N. and Lucchetti R.E. (2002). Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49: 643–670

    Article  MathSciNet  MATH  Google Scholar 

  9. Bednarczuk E. and Penot J.-P. (1992). Metrically well-set minimization problems. Appl. Math.   Optim. 26: 273–285

    Article  MathSciNet  MATH  Google Scholar 

  10. Beer, G.: Topologies on Closed and Closed Convex Sets, Mathematics and Its Applications, vol. 268. Kluwer, Dordrecht (1993)

  11. Cornejo O., Jourani A. and Zălinescu C. (1997). Conditioning and upper-Lipschitz inverse subdifferentials in nonsmooth optimization problems. J. Optim. Theory Appl. 95: 127–148

    Article  MathSciNet  MATH  Google Scholar 

  12. Corvellec J.-N. (1996). A note on coercivity of lower semicontinuous functions and nonsmooth critical point theory. Serdica Math. J. 22: 57–68

    MathSciNet  MATH  Google Scholar 

  13. Corvellec J.-N. (1999). Quantitative deformation theorems and critical point theory. Pac. J. Math. 187: 263–279

    Article  MathSciNet  MATH  Google Scholar 

  14. Corvellec J.-N. (2001). On the second deformation lemma. Topol. Methods Nonlinear Anal. 17: 55–66

    MathSciNet  MATH  Google Scholar 

  15. Corvellec J.-N., Degiovanni M. and Marzocchi M. (1993). Deformation properties for continuous functionals and critical point theory. Topol. Methods Nonlinear Anal. 1: 151–171

    MathSciNet  MATH  Google Scholar 

  16. Corvellec J.-N. and Hantoute A. (2002). Homotopical stability of isolated critical points of continuous functionals. Set-Valued Anal. 10: 143–164

    Article  MathSciNet  MATH  Google Scholar 

  17. De Giorgi E., Marino A. and Tosques M. (1980). Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68: 180–187

    MathSciNet  MATH  Google Scholar 

  18. Degiovanni M. and Marzocchi M. (1994). A critical point theory for nonsmooth functionals. Ann. Mat. Pura Appl. 167: 73–100

    Article  MathSciNet  MATH  Google Scholar 

  19. Dolecki S. and Angleraud P. (1996). When a well behaving convex function is well-conditioned. Southeast Asian Bull. Math. 20: 59–63

    MathSciNet  MATH  Google Scholar 

  20. Ekeland I. (1979). Nonconvex minimization problems. Bull. Am. Math. Soc. 1: 443–474

    Article  MathSciNet  MATH  Google Scholar 

  21. Emelyanov, S.V., Korovin, S.K., Bobylev, N.A., Bulatov A.V.: Homotopies of Extremal Problems (Russian). Nauka, Moscow (2001)

  22. Federer H. (1969). Geometric Measure Theory. Springer, Heidelberg

    MATH  Google Scholar 

  23. Hamel A. (1994). Remarks to an equivalent formulation of Ekeland’s variational principle. Optimization 31: 233–238

    Article  MathSciNet  MATH  Google Scholar 

  24. Ioffe, A.: Towards metric theory of metric regularity. In: Lassonde, M. (ed.) Approximation, Optimization and Mathematical Economics, pp. 165–176. (Guadeloupe 1999), Physica-Verlag, Heidelberg (2001)

  25. Ioffe A. (2000). Metric regularity and subdifferential calculus. Russ. Math. Surv. 55: 501–558

    Article  MathSciNet  MATH  Google Scholar 

  26. Ioffe A. and Schwartzman E. (1996). Metric critical point theory 1. Morse regularity and homotopic stability of a minimum. J. Math. Pures Appl. 75: 125–153

    MathSciNet  MATH  Google Scholar 

  27. Ioffe, A., Schwartzman, E.: Metric critical point theory 2. Deformation techniques. In: New Results in Operator Theory and its Applications. Oper. Theory Adv. Appl. 1996, pp. 131–144. Birkhäuser, Basel (1997)

  28. Jules, F.: Sur la somme de sous-différentiels de fonctions semi-continues inférieurement. Dissertationes Math. (Rozprawy Mat.) 423, 62 pp (2003)

    Google Scholar 

  29. Lemaire, B.: Bonne position, conditionnement, et bon comportement asymptotique. Sém. Anal. Convexe 22, Exp. No. 5, 12 pp (1992)

  30. Michel, L.: Contribution à l’approximation de problèmes d’optimisation et de contrôle optimal. thèse, Université de Perpignan (1998)

  31. Ng K.F. and Zheng X.Y. (2001). Error bounds for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12: 1–17

    Article  MathSciNet  MATH  Google Scholar 

  32. Penot J.-P. (1986). The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear Anal. 10: 813–822

    Article  MathSciNet  MATH  Google Scholar 

  33. Penot J.-P. (1998). Well-behavior, well-posedness and nonsmooth analysis. Pliska Stud. Math. Bulgar. 12: 141–190

    MathSciNet  MATH  Google Scholar 

  34. Wu Z. and Ye J. (2002). On error bounds for lower semicontinuous functions. Math. Program. Ser. A 92: 301–314

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang R. (2005). Weakly upper Lipschitz multifunctions and applications in parametric optimization. Math. Program. Ser. A 102: 153–166

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Noël Corvellec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corvellec, JN., Motreanu, V.V. Nonlinear error bounds for lower semicontinuous functions on metric spaces. Math. Program. 114, 291–319 (2008). https://doi.org/10.1007/s10107-007-0102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0102-z

Mathematics Subject Classification (2000)

Navigation