Skip to main content
Log in

Nonlinear Error Bounds via a Change of Function

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This work can be seen as a sequel to our previous paper, which dealt with local nonlinear error bounds for lower semicontinuous functions on complete metric spaces, based on estimates of the strong slope of the function through the distance to a sublevel set. Here, we consider estimates of the strong slope through the values of the function, and we provide characterizations of nonlinear local and global error bounds that are again obtained by a reduction to the linear case. Our main tool is a simple chain rule for the strong slope. We provide several examples showing that recent results in the literature can be recaptured from our general framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azé, D., Corvellec, J.-N.: Nonlinear local error bounds via a change of metric. J. Fixed Point Theory Appl. 16, 351–372 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azé, D., Corvellec, J.-N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, 409–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Corvellec, J.-N., Motreanu, V.V.: Nonlinear error bounds for lower semicontinuous functions on metric spaces. Math. Program., Ser. A 114, 291–319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azé, D., Corvellec, J.-N., Lucchetti, R.E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49(2002), 643–670 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16, 531–547 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362, 3319–3363 (2010)

    Article  MATH  Google Scholar 

  7. Noll, D., Rondepierre, A.: Convergence of linesearch and trust-region methods using the Kurdyka-Łojasiewicz inequality. In: Computational and Analytical Mathematics, Springer Proc. Math. Stat., vol. 50, pp. 593–611. Springer-Verlag, New York (2013)

  8. De Giorgi, E., Marino, A., Tosques, M.: Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur 68, 180–187 (1980)

    MATH  Google Scholar 

  9. Azé, D.: A unified theory for metric regularity of multifunctions. J. Convex Anal. 13, 225–252 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  Google Scholar 

  11. Rosenbloom, P.C.: Quelques classes de problèmes extrémaux. Bull. Soc. Math. France 79, 1–58 (1951)

    MathSciNet  MATH  Google Scholar 

  12. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49, 263–265 (1952)

    Article  MathSciNet  Google Scholar 

  13. Ioffe, A.D.: Regular points of Lipschitz functions. Trans. Am. Math. Soc. 251, 61–69 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wu, Z., Ye, J.: First-order and second-order conditions for error bounds. SIAM J. Optim. 14, 621–645 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chao, M., Cheng, C.: Linear and nonlinear error bounds for lower semicontinuous functions. Optim. Lett. 8, 1301–1312 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ngai, H.V., Théra, M.: Error bounds in metric spaces and applications to the perturbation stability of metric regularity. SIAM J. Optim. 19, 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ioffe, A.D.: Nonlinear regularity models. Math. Program., Ser. B 139, 223–242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier (Grenoble) 48, 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Łojasiewicz, S.: On semi-analytic and subanalytic geometry. In: Panoramas of Mathematics (Warsaw 1992/94). Banach Center Publ, vol. 34, pp. 89–104. Polish Acad. Sci, Warsaw (1995)

  20. Lyubich, YuI, Maistrowskii, G.D.: The general theory of relaxation processes for convex functionals. Russ. Math. Surv. 25, 57–117 (1970)

    Article  MathSciNet  Google Scholar 

  21. Ngai, H.V., Théra, M.: Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math. Program., Ser. B 116, 397–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  23. Auslender, A.: Well behaved asymptotical convex functions. Ann. Inst. H. Poincaré, Anal. Non Linéaire 6, 101–121 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Corvellec, J.-N.: Quantitative deformation theorems and critical point theory. Pac. J. Math. 187, 263–279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Corvellec, J.-N., Hantoute, A.: Homotopical stability of isolated critical points of continuous functionals. Set-Valued Anal. 10, 143–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ioffe A.D.: Metric regularity. Theory and applications—a survey. arXiv:1505.07920v1

  27. Pchenitchny, B., Daniline, Y.: Numerical Methods in Extremal Problems. Mir, Moscow (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Noël Corvellec.

Additional information

Communicated by Viorel Barbu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azé, D., Corvellec, JN. Nonlinear Error Bounds via a Change of Function. J Optim Theory Appl 172, 9–32 (2017). https://doi.org/10.1007/s10957-016-1001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-1001-3

Keywords

Mathematics Subject Classification

Navigation