Skip to main content

On a Quantitative Semicontinuity Property of Variational Systems with Applications to Perturbed Quasidifferentiable Optimization

  • Chapter
  • First Online:
Constructive Nonsmooth Analysis and Related Topics

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 87))

Abstract

Lipschitz lower semicontinuity is a quantitative stability property for set-valued maps with relevant applications to perturbation analysis of optimization problems. The present paper reports on an attempt of studying such property, by starting with a related result valid for variational systems in metric spaces. Elements of nonsmooth analysis are subsequently employed to express and apply such result and its consequences in more structured settings. This approach leads to obtain a solvability, stability, and sensitivity condition for perturbed optimization problems with quasidifferentiable data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, this is not the original definition, but an alternative one, as resulting from Proposition 1.2 in [25]. The notion of prox-regularity was introduced in [24] in a finite-dimensional setting. It is worth noting that, quite recently, the notion of prox-regular set has been extended to the uniformly convex Banach space setting in [3]. Since such an extension requires a certain amount of technicalities and the case of Hilbert spaces is already significant, consequent generalizations of results here presented to such a broader setting will be disregarded here.

References

  1. Aubin, J.-P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9, 87–111 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-Linear Parametric Optimization. Akademie-Verlag, Berlin (1982)

    Google Scholar 

  3. Bernard, F., Thibault, L., Zlateva, N.: Characterizations of prox-regular sets in uniformly convex Banach spaces. J. Convex Anal. 13, 525–559 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  5. Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)

    MATH  Google Scholar 

  7. Clarke, F.H., Stern R.J., Wolenski P.R.: Proximal smoothness and lower-C 2 property. J. Convex Anal. 2, 117–144 (1995)

    MathSciNet  MATH  Google Scholar 

  8. De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68(8), 180–187 (1980) [in Italian]

    MathSciNet  MATH  Google Scholar 

  9. Dempe, S., Pallaschke, D.: Quasidifferentiability of optimal solutions in parametric nonlinear optimization. Optimization 40, 1–24 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demyanov, V.F., Rubinov, A.M.: Quasidifferentiable functionals. Dokl. Akad. Nauk SSSR 250, 21–25 (1980) [in Russian]

    MathSciNet  Google Scholar 

  11. Demyanov, V.F., Rubinov, A.M.: On quasidifferentiable mappings. Math. Oper. forsch. Stat. Ser. Optim. 14, 3–21 (1983)

    MATH  Google Scholar 

  12. Demyanov, V.F., Rubinov, A.M.: Quasidifferential Calculus. Optimization Software, New York (1986)

    Book  MATH  Google Scholar 

  13. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main (1995)

    Google Scholar 

  14. Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.: Error bounds: necessary and sufficient conditions. Set-Valued Var. Anal. 18, 121–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis. Academic, New York (1983)

    MATH  Google Scholar 

  16. Henrion, R., Outrata, J.V.: Calmness of constraint systems with applications. Math. Program. 104, Ser. B, 437–464 (2005)

    Google Scholar 

  17. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimizations. Regularity, Calculus, Methods and Applications. Kluwer, Dordrecht (2002)

    Google Scholar 

  18. Levitin, E.S.: Perturbation Theory in Mathematical Programming and Its Applications. Wiley, Ltd., Chichester (1994)

    Google Scholar 

  19. Luderer, B., Minchenko, L., Satsura, T.: Multivalued Analysis and Nonlinear Programming Problems with Perturbations. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  20. Muselli, E.: Upper and lower semicontinuity for set-valued mappings involving constraints. J. Optim. Theory Appl. 106, 527–550 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  22. Pallaschke, D., Urbański, R.: Pairs of Compact Convex Sets. Fractional Arithmetic with Convex Sets. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  23. Peressini, A.L.: Ordered Topological Vector Spaces. Harper and Row, New York-London (1967)

    MATH  Google Scholar 

  24. Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348, 1805–1838 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Poliquin, R.A., Rockafellar R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Robinson, S.M.: Generalized equations and their solutions, Part I: Basic theory. Math. Program. Study 10, 128–141 (1979)

    Article  MATH  Google Scholar 

  27. Robinson, S.M.: Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity. Math. Program. Study 30, 45–66 (1987)

    Article  MATH  Google Scholar 

  28. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  29. Rubinov, A.M.: Differences of convex compact sets and their applications in nonsmooth analysis. In: Giannessi, F. (ed.) Nonsmooth Optimization. Methods and Applications, pp. 366–378. Gordon and Breach, Amsterdam (1992)

    Google Scholar 

  30. Rubinov, A.M., Akhundov, I.S.: Differences of compact sets in the sense of Demyanov and its applications to nonsmooth analysis. Optimization 23, 179–188 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rubinov, A.M.,Vladimirov, A.A.: Differences of convex compacta and metric spaces of convex compacta with applications: a survey. In: Demyanov, V.F., Rubinov, A.M. (eds.) Quasidifferentiability and Related Topics, pp. 263–296. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  32. Uderzo A.: Convex difference criteria for the quantitative stability of parametric quasidifferentiable systems. Set-Valued Anal. 15, 81–104 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Uderzo A.: On Lipschitz semicontinuity properties of variational systems with application to parametric optimization. Submitted paper, 1–26 preprint (2012), arXiv:1305.3459

    Google Scholar 

  34. Yen, N.D.: Stability of the solution set of perturbed nonsmooth inequality systems and application. J. Optim. Theory Appl. 93, 199–225 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The revised version of this paper took benefit from the careful reading and the useful remarks by two anonymous referees. The author thanks both of them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Uderzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uderzo, A. (2014). On a Quantitative Semicontinuity Property of Variational Systems with Applications to Perturbed Quasidifferentiable Optimization. In: Demyanov, V., Pardalos, P., Batsyn, M. (eds) Constructive Nonsmooth Analysis and Related Topics. Springer Optimization and Its Applications, vol 87. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8615-2_8

Download citation

Publish with us

Policies and ethics