Skip to main content
Log in

Dose-dependent effect of the pulsed Nd:YAG laser in the treatment of crushed sciatic nerve in Wister rats: an experimental model

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The objective of the study was to investigate the efficacy of three energy densities 4, 10, and 50 J/cm2 of pulsed Nd:YAG laser for the treatment of crushed sciatic nerve in Wister rats by evaluating changes in the sciatic functional index and the electrophysiology.A total of 180 Wistar rats were involved in the study. Rats were randomly assigned to five groups. Rats were subjected to the sciatic nerve crushing. Control negative (CONT-ve), which received no crushing; control positive (CONT+ve), which received crushing with no laser; and HILT-4, HILT-10, and HILT-50 groups, which received pulsed Nd:YAG laser (10 Hz, 360 mJ/cm2) with energy densities 4, 10, and 50 J/cm2, respectively. The SFI, the amilitude of compound motor action potential (CMAP) and sciatic motor nerve conduction velocity (MNCV) were measured before and after seven, 14, and 21 days after crushing. For the SFI and electrophysiological analysis, repeated measures ANOVA is used, followed by Bonferroni’s repeated-measures test. Statistical significance was set at p < 0.05. After one week, there was no significant difference in SFI, CMAP, and MNCV among the three laser groups with significant changes between them and CONT-ve and CONT+ve groups. There was a significant increase in either CMAP amplitude or MNCV after 14 days with significant decrease in the SFI after 21 days among all treatment groups. The pulsed Nd:YAG laser applied with energy densities 4, 10, and 50 J/cm2 significantly decreased the SFI and increased the CMAP and MNCV of the crushed sciatic nerve in Wister rats. Among laser doses, the difference in the rate of recovery in the electrophysiology was found after two weeks while in the SFI after three weeks. The improvement after the nerve injury was time and dose dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Souza LG, Marcolino AM, Kuriki HU, Goncalves ECD, Fonseca MCR, Barbosa RI (2018) Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci 33(6):1341–1349. https://doi.org/10.1007/s10103-018-2494-9

    Article  Google Scholar 

  2. Anders JJ, Moges H, Wu X, Erbele ID, Alberico SL, Saidu EK, Smith JT, Pryor BA (2014) In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves. Lasers Surg Med 46(1):34–45. https://doi.org/10.1002/lsm.22212

    Article  Google Scholar 

  3. Andraus RAC, Maia LP, de Souza Lino AD, Fernandes KBP, de Matos Gomes MV, de Jesus Guirro RR, Barbieri CH (2017) LLLT actives MMP-2 and increases muscle mechanical resistance after nerve sciatic rat regeneration. Lasers Med Sci 32(4):771–778. https://doi.org/10.1007/s10103-017-2169-y

    Article  Google Scholar 

  4. Wang CZ, Chen YJ, Wang YH, Yeh ML, Huang MH, Ho ML, Liang JI, Chen CH (2014) Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS One 9(8):e103348. https://doi.org/10.1371/journal.pone.0103348

    Article  CAS  Google Scholar 

  5. Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82(4):163–201. https://doi.org/10.1016/j.pneurobio.2007.06.005

    Article  CAS  Google Scholar 

  6. Hoffman PN (2010) A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons. Exp Neurol 223(1):11–18. https://doi.org/10.1016/j.expneurol.2009.09.006

    Article  CAS  Google Scholar 

  7. Yarar E, Kuruoglu E, Kocabicak E, Altun A, Genc E, Ozyurek H, Kefeli M, Marangoz AH, Aydin K, Cokluk C (2015) Electrophysiological and histopathological effects of mesenchymal stem cells in treatment of experimental rat model of sciatic nerve injury. Int J Clin Exp Med 8(6):8776–8784

    Google Scholar 

  8. Gigo-Benato D, Russo TL, Tanaka EH, Assis L, Salvini TF, Parizotto NA (2010) Effects of 660 and 780 nm low-level laser therapy on neuromuscular recovery after crush injury in rat sciatic nerve. Lasers Surg Med 42(9):673–682. https://doi.org/10.1002/lsm.20978

    Article  Google Scholar 

  9. Barbosa RI, Marcolino AM, de Jesus Guirro RR, Mazzer N, Barbieri CH, de Cassia Registro Fonseca M (2010) Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci 25(3):423–430. https://doi.org/10.1007/s10103-009-0750-8

    Article  Google Scholar 

  10. Marcolino AM, Barbosa RI, das Neves LM, Mazzer N, de Jesus Guirro RR, de Cassia Registro Fonseca M (2013) Assessment of functional recovery of sciatic nerve in rats submitted to low-level laser therapy with different fluences. An experimental study: laser in functional recovery in rats. J Hand Microsurg 5(2):49–53. https://doi.org/10.1007/s12593-013-0096-0

    Article  Google Scholar 

  11. Andreo L, Soldera CB, Ribeiro BG, de Matos PRV, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA (2017) Effects of photobiomodulation on experimental models of peripheral nerve injury. Lasers Med Sci 32(9):2155–2165. https://doi.org/10.1007/s10103-017-2359-7

    Article  CAS  Google Scholar 

  12. de Oliveira RF, de Andrade Salgado DM, Trevelin LT, Lopes RM, da Cunha SR, Aranha AC, de Paula EC, de Freitas PM (2015) Benefits of laser phototherapy on nerve repair. Lasers Med Sci 30(4):1395–1406. https://doi.org/10.1007/s10103-014-1531-6

    Article  Google Scholar 

  13. Takhtfooladi MA, Jahanbakhsh F, Takhtfooladi HA, Yousefi K, Allahverdi A (2015) Effect of low-level laser therapy (685 nm, 3 J/cm(2)) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci 30(3):1047–1052. https://doi.org/10.1007/s10103-015-1709-6

    Article  Google Scholar 

  14. Ziago EK, Fazan VP, Iyomasa MM, Sousa LG, Yamauchi PY, da Silva EA, Borie E, Fuentes R, Dias FJ (2017) Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats: a morphological, quantitative, and morphometric study. Lasers Med Sci 32(2):369–378. https://doi.org/10.1007/s10103-016-2126-1

    Article  Google Scholar 

  15. Akgul T, Gulsoy M, Gulcur HO (2014) Effects of early and delayed laser application on nerve regeneration. Lasers Med Sci 29(1):351–357. https://doi.org/10.1007/s10103-013-1355-9

    Article  Google Scholar 

  16. Silva-Couto MA, Gigo-Benato D, Tim CR, Parizotto NA, Salvini TF, Russo TL (2012) Effects of low-level laser therapy after nerve reconstruction in rat denervated soleus muscle adaptation. Revista brasileira de fisioterapia (Sao Carlos (Sao Paulo, Brazil)) 16(4):320–327

    Google Scholar 

  17. Sene GA, Sousa FF, Fazan VS, Barbieri CH (2013) Effects of laser therapy in peripheral nerve regeneration. Acta Ortopedica Brasileira 21(5):266–270. https://doi.org/10.1590/s1413-78522013000500005

    Article  Google Scholar 

  18. Sousa FF, Ribeiro TL, Fazan VP, Barbieri CH (2013) Lack of effectiveness of laser therapy applied to the nerve course and the correspondent medullary roots. Acta ortopedica brasileira 21(2):92–97. https://doi.org/10.1590/s1413-78522013000200005

    Article  Google Scholar 

  19. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-response : a publication of International Hormesis Society 7(4):358–383. https://doi.org/10.2203/dose-response.09-027.Hamblin

    Article  Google Scholar 

  20. Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose-response : a publication of International Hormesis Society 9(4):602–618. https://doi.org/10.2203/dose-response.11-009.Hamblin

    Article  CAS  Google Scholar 

  21. Kheshie AR, Alayat MS, Ali MM (2014) High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers Med Sci 29(4):1371–1376. https://doi.org/10.1007/s10103-014-1529-0

    Article  Google Scholar 

  22. Alayat MSM, Aly THA, Elsayed AEM, Fadil ASM (2017) Efficacy of pulsed Nd: YAG laser in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers Med Sci 32(3):503–511

    Article  Google Scholar 

  23. Alayat MSM, Atya AM, Ali MME, Shosha TM (2014) Long-term effect of high-intensity laser therapy in the treatment of patients with chronic low back pain: a randomized blinded placebo-controlled trial. Lasers Med Sci 29(3):1065–1073

    Article  Google Scholar 

  24. Alayat MSM, Alshehri MA, Shousha TM, Abdelgalil AA, Al-Attar WS, Alhasan H, Khayyat OK (2019) The effectiveness of high intensity laser therapy in the management of spinal disorders: a systematic review and meta-analysis. J Back musculoskelet Rehabil. https://doi.org/10.3233/bmr-181341

  25. Alayat MS, Mohamed AA, Helal OFE, Khaled OA (2016) Efficacy of high-intensity laser therapy in the treatment of chronic neck pain: a randomized double-blind placebo-control trial. Lasers Med Sci 31(4):687–694. https://doi.org/10.1007/s10103-016-1910-2

    Article  Google Scholar 

  26. Dundar U, Turkmen U, Toktas H, Solak O, Ulasli AM (2015) Effect of high-intensity laser therapy in the management of myofascial pain syndrome of the trapezius: a double-blind, placebo-controlled study. Lasers Med Sci 30(1):325–332. https://doi.org/10.1007/s10103-014-1671-8

    Article  Google Scholar 

  27. Elsodany AM, Alayat MSM, Ali MME, Khaprani HM (2018) Long-term effect of pulsed Nd:YAG laser in the treatment of patients with rotator cuff tendinopathy: a randomized controlled trial. Photomed Laser Surg 36(9):506–513. https://doi.org/10.1089/pho.2018.4476

    Article  Google Scholar 

  28. Alayat MSM, Elsodany AM, El Fiky AAR (2014) Efficacy of high and low level laser therapy in the treatment of Bell's palsy: a randomized double blind placebo-controlled trial. Lasers Med Sci 29(1):335–342

    Google Scholar 

  29. de Medinaceli L, DeRenzo E, Wyatt RJ (1984) Rat sciatic functional index data management system with digitized input. Comp Biomed Res Int J 17(2):185–192

    Google Scholar 

  30. Bain JR, Mackinnon SE, Hunter DA (1989) Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 83(1):129–138

    CAS  Google Scholar 

  31. Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol : official journal of the International Federation of Clinical Neurophysiology 119(9):1951–1965. https://doi.org/10.1016/j.clinph.2008.03.018

    Article  Google Scholar 

  32. Geuna S (2015) The sciatic nerve injury model in pre-clinical research. J Neurosci Methods 243:39–46. https://doi.org/10.1016/j.jneumeth.2015.01.021

    Article  Google Scholar 

  33. de Almeida Melo Maciel Mangueira M, Maciel Mangueira N, Pereira Gama Filho O, Moyses de Oliveira M, Albuquerque Heluy R, Silveira L Jr, Caparelli Moniz de Aragao Daquer E (2019) Biochemical changes in injured sciatic nerve of rats after low-level laser therapy (660 nm and 808 nm) evaluated by Raman spectroscopy. Lasers Med Sci 34(3):525–535. https://doi.org/10.1007/s10103-018-2627-1

    Article  Google Scholar 

  34. de Almeida Melo Maciel Mangueira M, Maciel Mangueira N, Pereira Gama Filho O, Moyses de Oliveira M, Albuquerque Heluy R, Silveira L Jr, Caparelli Moniz de Aragao Daquer E (2018) Biochemical changes in injured sciatic nerve of rats after low-level laser therapy (660 nm and 808 nm) evaluated by Raman spectroscopy. Lasers Med Sci. https://doi.org/10.1007/s10103-018-2627-1

  35. Reis F, Belchior A, Nicolau R, Fonseca T, Carvalho P (2008) Efeito da terapia com laser de arsenieto de gálio e alumínio (660Nm) sobre a recuperação do nervo ciático de ratos após lesão por neurotmese seguida de anastomose epineural: análise funcional. Braz J Physical Ther 12:215–221

    Google Scholar 

  36. de Medinaceli L, Freed WJ, Wyatt RJ (1982) An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 77(3):634–643

    Google Scholar 

  37. Bae CS, Lim SC, Kim KY, Song CH, Pak S, Kim SG, Jang CH (2004) Effect of Ga-as laser on the regeneration of injured sciatic nerves in the rat. In vivo (Athens, Greece) 18(4):489–495

    Google Scholar 

  38. Song HJ, Seo HJ, Lee Y, Kim SK (2018) Effectiveness of high-intensity laser therapy in the treatment of musculoskeletal disorders: a systematic review and meta-analysis of randomized controlled trials. Medicine 97(51):e13126. https://doi.org/10.1097/md.0000000000013126

    Article  Google Scholar 

  39. Serafim KG, Ramos Sde P, de Lima FM, Carandina M, Ferrari O, Dias IF, Toginho Filho Dde O, Siqueira CP (2012) Effects of 940 nm light-emitting diode (led) on sciatic nerve regeneration in rats. Lasers Med Sci 27(1):113–119. https://doi.org/10.1007/s10103-011-0923-0

    Article  Google Scholar 

  40. Medalha CC, Di Gangi GC, Barbosa CB, Fernandes M, Aguiar O, Faloppa F, Leite VM, Renno AC (2012) Low-level laser therapy improves repair following complete resection of the sciatic nerve in rats. Lasers Med Sci 27(3):629–635. https://doi.org/10.1007/s10103-011-1008-9

    Article  Google Scholar 

  41. Oliveira FB, Pereira VM, da Trindade AP, Shimano AC, Gabriel RE, Borges AP (2012) Action of therapeutic laser and ultrasound in peripheral nerve regeneration. Acta ortopedica brasileira 20(2):98–103. https://doi.org/10.1590/s1413-78522012000200008

    Article  Google Scholar 

  42. Khullar SM, Brodin P, Messelt EB, Haanaes HR (1995) The effects of low level laser treatment on recovery of nerve conduction and motor function after compression injury in the rat sciatic nerve. Eur J Oral Sci 103(5):299–305

    CAS  Google Scholar 

  43. dos Reis FA, Belchior AC, de Carvalho PT, da Silva BA, Pereira DM, Silva IS, Nicolau RA (2009) Effect of laser therapy (660 nm) on recovery of the sciatic nerve in rats after injury through neurotmesis followed by epineural anastomosis. Lasers Med Sci 24(5):741–747. https://doi.org/10.1007/s10103-008-0634-3

    Article  Google Scholar 

  44. Zhang LX, Tong XJ, Yuan XH, Sun XH, Jia H (2010) Effects of 660-nm gallium-aluminum-arsenide low-energy laser on nerve regeneration after acellular nerve allograft in rats. Synapse (New York, NY) 64(2):152–160. https://doi.org/10.1002/syn.20724

    Article  CAS  Google Scholar 

  45. Shen CC, Yang YC, Liu BS (2011) Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats. Injury 42(8):803–813. https://doi.org/10.1016/j.injury.2011.02.005

    Article  Google Scholar 

  46. Shen CC, Yang YC, Huang TB, Chan SC, Liu BS (2013) Neural regeneration in a novel nerve conduit across a large gap of the transected sciatic nerve in rats with low-level laser phototherapy. J Biomed Mater Res A 101(10):2763–2777. https://doi.org/10.1002/jbm.a.34581

    Article  CAS  Google Scholar 

  47. Bagis S, Comelekoglu U, Coskun B, Milcan A, Buyukakilli B, Sahin G, Ozisik S, Erdogan C (2003) No effect of GA-AS (904 nm) laser irradiation on the intact skin of the injured rat sciatic nerve. Lasers Med Sci 18(2):83–88. https://doi.org/10.1007/s10103-003-0258-6

    Article  CAS  Google Scholar 

  48. Diker N, Aytac D, Helvacioglu F, Oguz Y (2019) Comparative effects of photobiomodulation therapy at wavelengths of 660 and 808 nm on regeneration of inferior alveolar nerve in rats following crush injury. Lasers Med Sci. https://doi.org/10.1007/s10103-019-02838-w

  49. Ash C, Dubec M, Donne K, Bashford T (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32(8):1909–1918. https://doi.org/10.1007/s10103-017-2317-4

    Article  Google Scholar 

  50. Ansari MA, Mohajerani E (2011) Mechanisms of laser-tissue interaction: I Optical Properties of Tissue. J Lasers Med Sci 2(3):119–125

    Google Scholar 

  51. Gigo-Benato D, Geuna S, Rochkind S (2005) Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 31(6):694–701. https://doi.org/10.1002/mus.20305

    Article  Google Scholar 

  52. Alcantara CC, Gigo-Benato D, Salvini TF, Oliveira AL, Anders JJ, Russo TL (2013) Effect of low-level laser therapy (LLLT) on acute neural recovery and inflammation-related gene expression after crush injury in rat sciatic nerve. Lasers Surg Med 45(4):246–252. https://doi.org/10.1002/lsm.22129

    Article  Google Scholar 

  53. Song JW, Li K, Liang ZW, Dai C, Shen XF, Gong YZ, Wang S, Hu XY, Wang Z (2017) Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci Rep 7(1):620. https://doi.org/10.1038/s41598-017-00553-6

    Article  CAS  Google Scholar 

  54. de Andrade ALM, Bossini PS, do Canto De Souza ALM, Sanchez AD, Parizotto NA (2017) Effect of photobiomodulation therapy (808 nm) in the control of neuropathic pain in mice. Lasers Med Sci 32(4):865–872. https://doi.org/10.1007/s10103-017-2186-x

    Article  Google Scholar 

  55. Rocha IR, Ciena AP, Rosa AS, Martins DO, Chacur M (2017) Photobiostimulation reverses allodynia and peripheral nerve damage in streptozotocin-induced type 1 diabetes. Lasers Med Sci 32(3):495–501. https://doi.org/10.1007/s10103-016-2140-3

    Article  Google Scholar 

  56. Amaroli A, Ravera S, Baldini F, Benedicenti S, Panfoli I, Vergani L (2019) Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med Sci 34(3):495–504. https://doi.org/10.1007/s10103-018-2623-5

    Article  Google Scholar 

Download references

Funding

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology - the Kingdom of Saudi Arabia, award number (12-MED 2958-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Salaheldien Mohamed Alayat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Research Ethical Committee, Faculty of Applied Medical Science, Umm Al-Qura University, approved the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alayat, M.S.M., Basalamah, M.A., Elbarrany, W.G.E.AE. et al. Dose-dependent effect of the pulsed Nd:YAG laser in the treatment of crushed sciatic nerve in Wister rats: an experimental model. Lasers Med Sci 35, 1989–1998 (2020). https://doi.org/10.1007/s10103-020-02999-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-02999-z

Keywords

Navigation