Skip to main content

Advertisement

Log in

Effects of laser therapy on patients who underwent rapid maxillary expansion; a systematic review

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Rapid maxillary expansion (RME) is one of the common treatments of transverse maxillary deficiency, and low-level laser therapy (LLLT) is one of the recommended solutions to enhance biological wound or bone healing. This review article aims to answer the following question: “What are the effects of LLLT, on patients who underwent surgical or non-surgical RME, in improving clinical success, wound healing, and bone regeneration?” A search in PubMed, Scopus, Web of Science, and ProQuest databases was performed, with a focus on the appropriate key words. Related articles, up to May 2017, were screened, and the full text of the randomized controlled trials (RCT) were comprehensively read and subjected to quality assessments. A total of 1804 articles were included after the initial search. Four RCTs were eligible in randomization and methodology. The applied wavelength varied from 660 to 830 nm with an output range of 40–100 mW. Also, the highest exposed energy was 420 J/cm2 and the lowest was 100 J/cm2. The exposure time differed from 20 to 84 s in each defined point in the palate. Based on the RCTs available, LLLT is better to be used at initial phase of RME, because it has some benefits in increasing the rate of bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aloufi F, Preston CB, Zawawi KH (2012) Changes in the upper and lower pharyngeal airway spaces associated with rapid maxillary expansion. ISRN Dent 2012

  2. Jr CM, Alves FEMM, Nagai LHY, Fujita RR, Pignatari SSN (2017) Impact of rapid maxillary expansion on nasomaxillary complex volume in mouth-breathers. Dental Press J Orthod 22:79–88

    Article  Google Scholar 

  3. Franchi L, Baccetti T (2005) Transverse maxillary deficiency in class II and class III malocclusions: a cephalometric and morphometric study on postero-anterior films. Orthod Craniofac Res 8:21–28

    Article  PubMed  CAS  Google Scholar 

  4. McNamara Jr JA, Baccetti T, Franchi L, Herberger TA (2003) Rapid maxillary expansion followed by fixed appliances: a long-term evaluation of changes in arch dimensions. Angle Orthod. 73:344–353

    Google Scholar 

  5. Suri L, Taneja P (2008) Surgically assisted rapid palatal expansion: a literature review. Am J Orthod Dentofac Orthop 133:290–302

    Article  Google Scholar 

  6. Bucci R, D'Anto V, Rongo R, Valletta R, Martina R, Michelotti A (2016) Dental and skeletal effects of palatal expansion techniques: a systematic review of the current evidence from systematic reviews and meta-analyses. J Oral Rehabil 43:543–564

    Article  PubMed  CAS  Google Scholar 

  7. Halicioğlu K, Kiliç N, Yavuz İ, Aktan B (2010) Effects of rapid maxillary expansion with a memory palatal split screw on the morphology of the maxillary dental arch and nasal airway resistance. Eur J Orthod 32:716–720

    Article  PubMed  Google Scholar 

  8. Silverstein K, Quinn PD (1997) Surgically-assisted rapid palatal expansion for management of transverse maxillary deficiency. J Oral Maxillofac Surg 55:725–727

    Article  PubMed  CAS  Google Scholar 

  9. Romanyk DL, Lagravere MO, Toogood RW, Major PW, Carey JP (2010) Review of maxillary expansion appliance activation methods: engineering and clinical perspectives. J Dent Biomech 2010

  10. Marini I, Bonetti GA, Achilli V, Salemi G (2007) A photogrammetric technique for the analysis of palatal three-dimensional changes during rapid maxillary expansion. Eur J Orthod 29:26–30

    Article  PubMed  Google Scholar 

  11. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofac Orthop 111:525–532

    Article  CAS  Google Scholar 

  12. Moskvin SV (2017) Low-level laser therapy in Russia: history, science and practice. J Lasers Med Sci 8:56–65

    Article  PubMed  PubMed Central  Google Scholar 

  13. Borzabadi-Farahani A, Cronshaw M (2017) Lasers in orthodontics. In: Coluzzi D, Parker S (eds) Lasers in dentistry-current concepts, 1st edn. Springer International Publishing, pp 248–271

  14. Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41:291–297

    Article  PubMed  Google Scholar 

  15. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofac Orthop 111:525–532

    Article  CAS  Google Scholar 

  16. Noda M, Aoki A, Mizutani K, Lin T, Komaki M, Shibata S et al (2016) High-frequency pulsed low-level diode laser therapy accelerates wound healing of tooth extraction socket: an in vivo study. Lasers Surg Med 48:955–964

    Article  PubMed  Google Scholar 

  17. Romão M, Marques M, Cortes A, Horliana A, Moreira M, Lascala C (2015) Micro-computed tomography and histomorphometric analysis of human alveolar bone repair induced by laser phototherapy: a pilot study. Int J Oral Maxillofacl Surg 44:1521–1528

    Article  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  19. Augestad KM, Berntsen G, Lassen K, Bellika JG, Wootton R, Lindsetmo R-O et al (2011) Standards for reporting randomized controlled trials in medical informatics: a systematic review of CONSORT adherence in RCTs on clinical decision support. J Am Med Inform Assoc 19:13–21

    Article  PubMed  PubMed Central  Google Scholar 

  20. Angeletti P, Pereira MD, Gomes HC, Hino CT, Ferreira LM (2010) Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:e38–e46

    Article  PubMed  Google Scholar 

  21. Cepera F, Torres FC, Scanavini MA, Paranhos LR, Capelozza Filho L, Cardoso MA et al (2012) Effect of a low-level laser on bone regeneration after rapid maxillary expansion. Am J Orthod Dentofac Orthop 141:444–450

    Article  Google Scholar 

  22. Ferreira FNH, Gondim JO, Neto JJSM, Santos PCF, Pontes KMF, Kurita LM et al (2016) Effects of low-level laser therapy on bone regeneration of the midpalatal suture after rapid maxillary expansion. Lasers Med Sci 31:907–913

    Article  PubMed  Google Scholar 

  23. Garcia VJ, Arnabat J, Comesaña R, Kasem K, Ustrell JM, Pasetto S et al (2016) Effect of low-level laser therapy after rapid maxillary expansion: a clinical investigation. Lasers Med Sci 31:1185–1194

    Article  PubMed  Google Scholar 

  24. de Braekt MM, van Alphen FA, Kuijpers- Jagtman AM, Maltha JC (1991) Effect of low level laser therapy on wound healing after palatal surgery in beagle dogs. Lasers Surg Med 11:462–470

    Article  Google Scholar 

  25. Rosa CB, Habib FAL, de Araújo TM, Aragão JS, Gomes RS, Barbosa AFS et al (2014) Effect of the laser and light-emitting diode (LED) phototherapy on midpalatal suture bone formation after rapid maxilla expansion: a Raman spectroscopy analysis. Lasers Med Sci 29:859–867

    Article  PubMed  Google Scholar 

  26. Grassi FR, Ciccolella F, D'Apolito G, Papa F, Iuso A, Salzo AE et al (2011) Effect of low-level laser irradiation on osteoblast proliferation and bone formation. J Biol Regul Homeost Agents 25:603–614

    PubMed  CAS  Google Scholar 

  27. Parenti SI, Checchi L, Fini M, Tschon M (2014) Different doses of low-level laser irradiation modulate the in vitro response of osteoblast-like cells. J Biomed Opt 19:108002

    Article  CAS  Google Scholar 

  28. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 27:423–430

    Article  PubMed  Google Scholar 

  29. da Silva APRB, Petri AD, Crippa GE, Stuani AS, Stuani AS, Rosa AL et al (2012) Effect of low-level laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells. Lasers Med Sci 27:777–783

    Article  PubMed  Google Scholar 

  30. Aloise AC, Pereira MD, Hino CT, Gragnani Filho A, Ferreira LM (2007) Stability of the transverse dimension of the maxilla after surgically assisted rapid expansion. J Craniofac Surg 18:860–865

    Article  PubMed  Google Scholar 

  31. Takeda Y (1988) Irradiation effect of low-energy laser on alveolar bone after tooth extraction. Experimental study in rats. Int J Oral Maxillofac Surg 17:388–391

    Article  PubMed  CAS  Google Scholar 

  32. Pereira MD, Prado GPR, Abramoff MMF, Aloise AC, Ferreira LM (2010) Classification of midpalatal suture opening after surgically assisted rapid maxillary expansion using computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 110:41–45

    Article  PubMed  Google Scholar 

  33. Sasaki A, Touma Y, Ishino Y, Tanaka E, Aoyama J, Hanaoka K et al (2003) Linear polarized near-infrared irradiation stimulates mechanical expansion of the rat sagittal suture. Luminescence 18:58–60

    Article  PubMed  Google Scholar 

  34. Garib DG, Henriques JFC, Janson G, Freitas MR, Coelho RA (2005) Rapid maxillary expansion—tooth tissue-borne versus tooth-borne expanders: a computed tomography evaluation of dentoskeletal effects. Angle Orthod 75:548–557

    PubMed  Google Scholar 

  35. Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A (2014) Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci. 5:163–170

    PubMed  PubMed Central  Google Scholar 

  36. Barbosa D, Villaverde AGJB, Loschiavo Arisawa EÂ, RAd S (2014) Laser therapy in bone repair in rats: analysis of bone optical density. Acta Ortop Bras 22:71–74

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gupta A, Dai T, Hamblin MR (2014) Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice. Lasers Med Sci 29:257–265

    Article  PubMed  Google Scholar 

  38. Wehrbein H, Yildizhan F (2001) The mid-palatal suture in young adults. A radiological-histological investigation. Eur J Orthod 23:105–114

    Article  PubMed  CAS  Google Scholar 

  39. Liu S, Xu T, Zou W (2015) Effects of rapid maxillary expansion on the midpalatal suture: a systematic review. Eur J Orthod 37:651–655

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Amrolahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study followed the PRISMA guideline, and no ethical approval was required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoudi, A., Amrolahi, M. & Khaki, H. Effects of laser therapy on patients who underwent rapid maxillary expansion; a systematic review. Lasers Med Sci 33, 1387–1395 (2018). https://doi.org/10.1007/s10103-018-2545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2545-2

Keywords

Navigation