Skip to main content

Advertisement

Log in

Effect of diode low-level lasers on fibroblasts derived from human periodontal tissue: a systematic review of in vitro studies

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to systematically assess the parameter-specific effects of the diode low-level laser on human gingival fibroblasts (HGFs) and human periodontal ligament fibroblasts (HPDLFs). An extensive search was performed in major electronic databases including PubMed (1997), EMBASE (1947) and Web of Science (1956) and supplemented by hand search of reference lists and relevant laser journals for cell culture studies investigating the effect of diode low-level lasers on HGFs and HPDLFs published from January 1995 to December 2015. A total of 21 studies were included after screening 324 independent records, amongst which eight targeted HPDLFs and 13 focussed on HGFs. The diode low-level laser showed positive effects on promoting fibroblast proliferation and osteogenic differentiation and modulating cellular inflammation via changes in gene expression and the release of growth factors, bone-remodelling markers or inflammatory mediators in a parameter-dependent manner. Repeated irradiations with wavelengths in the red and near-infrared range and at an energy density below 16 J/cm2 elicited favourable responses. However, considerable variations and weaknesses in the study designs and laser protocols limited the interstudy comparison and clinical transition. Current evidence showed that diode low-level lasers with adequate parameters stimulated the proliferation and modulated the inflammation of fibroblasts derived from human periodontal tissue. However, further in vitro studies with better designs and more appropriate study models and laser parameters are anticipated to provide sound evidence for clinical studies and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sun G, Tunér J (2004) Low-level laser therapy in dentistry. Dent Clin N Am 48:1061–1076. doi:10.1016/j.cden.2004.05.004

    Article  PubMed  Google Scholar 

  2. de Paula EC, de Freitas PM, Esteves-Oliveira M et al (2010) Laser phototherapy in the treatment of periodontal disease. A review. Lasers Med Sci 25:781–792. doi:10.1007/s10103-010-0812-y

    Article  Google Scholar 

  3. Ge MK, He WL, Chen J et al (2015) Efficacy of low-level laser therapy for accelerating tooth movement during orthodontic treatment: a systematic review and meta-analysis. Lasers Med Sci 30:1609–1618. doi:10.1007/s10103-014-1538-z

    Article  CAS  PubMed  Google Scholar 

  4. Ren C, McGrath C, Yang Y (2015) The effectiveness of low-level diode laser therapy on orthodontic pain management: a systematic review and meta-analysis. Lasers Med Sci 30:1881–1893. doi:10.1007/s10103-015-1743-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tuner J, Hode L (2007) The laser therapy handbook: a guide for research scientists, doctors, dentists, veterinarians and other interested parties within the medical field. Prima Books, Grangesberg

    Google Scholar 

  6. Houreld NN, Abrahamse H (2008) Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose-and wavelength-dependent manner. Lasers Med Sci 23:11–18

    Article  CAS  PubMed  Google Scholar 

  7. Pinheiro AL, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178

    Article  CAS  PubMed  Google Scholar 

  8. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose–response 7:358–383. doi:10.2203/dose-response.09-027.Hamblin

    PubMed  PubMed Central  Google Scholar 

  9. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340

    Article  CAS  PubMed  Google Scholar 

  10. Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA (2006) Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–168

    Article  CAS  PubMed  Google Scholar 

  11. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:1–16. doi:10.1186/1423-0127-16-4

    Article  CAS  Google Scholar 

  12. Weinreb M, Nemcovsky CE (2015) In vitro models for evaluation of periodontal wound healing/regeneration. Periodontol 2000 68:41–54. doi:10.1111/prd.12079

    Article  PubMed  Google Scholar 

  13. Giannopoulou C, Cimasoni G (1996) Functional characteristics of gingival and periodontal ligament fibroblasts. J Dent Res 75:895–902

    Article  CAS  PubMed  Google Scholar 

  14. Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40

    Article  CAS  PubMed  Google Scholar 

  15. Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(S1):S3–S40. doi:10.1089/pho.2010.2771

    Article  PubMed  Google Scholar 

  16. Peplow PV, Chung TY, Ryan B, Baxter GD (2011) Laser photobiomodulation of gene expression and release of growth factors and cytokines from cells in culture: a review of human and animal studies. Photomed Laser Surg 29:285–304. doi:10.1089/pho.2010.2846

    Article  CAS  PubMed  Google Scholar 

  17. Choi EJ, Yim JY, Koo KT et al (2010) Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts. J Periodontal Implant Sci 40:105–110. doi:10.5051/jpis.2010.40.3.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kreisler M, Christoffers AB, Willershausen B, d’Hoedt B (2003) Effect of low‐level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30:353–358

    Article  PubMed  Google Scholar 

  19. Wu JY, Chen CH, Yeh LY, Yeh ML, Ting CC, Wang YH (2013) Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 5:85–91. doi:10.1038/ijos.2013.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mayahara K, Yamaguchi A, Sakaguchi M, Igarashi Y, Shimizu N (2010) Effect of Ga‐Al‐As laser irradiation on COX‐2 and cPLA2‐α and cPLA2 radiation on COX2010) effect of gas the proliferat. Lasers Surg Med 42:489–493. doi:10.1002/lsm.20871

    Article  PubMed  Google Scholar 

  21. Huang TH, Liu SL, Chen CL, Shie MY, Kao CT (2013) Low-level laser effects on simulated orthodontic tension side periodontal ligament cells. Photomed Laser Surg 31:72–77. doi:10.1089/pho.2012.3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ozawa Y, Shimizu N, Abiko Y (1997) Low‐energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg Med 21:456–463

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu N, Yamaguchi M, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y (1995) Inhibition of prostaglandin E2 and interleukin 1-β production by low-power laser irradiation in stretched human periodontal ligament cells. J Dent Res 74:1382–1388

    Article  CAS  PubMed  Google Scholar 

  24. Huang TH, Chen CC, Liu SL, Lu YC, Kao CT (2014) A low-level diode laser therapy reduces the lipopolysaccharide (LPS)-induced periodontal ligament cell inflammation. Laser Phys Lett. doi:10.1088/1612-2011/11/7/075602

    Google Scholar 

  25. Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184

    Article  CAS  PubMed  Google Scholar 

  26. Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34:260–265

    Article  PubMed  Google Scholar 

  27. Damante CA, De Micheli G, Miyagi SPH, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885–891. doi:10.1007/s10103-008-0582-y

    Article  PubMed  Google Scholar 

  28. Hakki SS, Bozkurt SB (2012) Effects of different setting of diode laser on the mRNA expression of growth factors and type I collagen of human gingival fibroblasts. Lasers Med Sci 27:325–331. doi:10.1007/s10103-010-0879-5

    Article  PubMed  Google Scholar 

  29. Basso FG, Pansani TN, Turrioni APS, Bagnato VS, Hebling J, de Souza Costa CA (2012) In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent. doi:10.1155/2012/719452

    PubMed  PubMed Central  Google Scholar 

  30. Azevedo LH, de Paula EF, Moreira MS, de Paula EC, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth. Lasers Med Sci 21:86–89

    Article  PubMed  Google Scholar 

  31. Frozanfar A, Ramezani M, Rahpeyma A, Khajehahmadi S, Arbab HR (2013) The effects of low level laser therapy on the expression of collagen type I gene and proliferation of human gingival fibroblasts (Hgf3-Pi 53): in vitro study. Iran J Basic Med Sci 16:1071–1074

    PubMed  PubMed Central  Google Scholar 

  32. Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci 23:211–215

    Article  PubMed  Google Scholar 

  33. Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, d’Hoedt B (2002) Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–369

    Article  PubMed  Google Scholar 

  34. Nomura K, Yamaguchi M, Abiko Y (2001) Inhibition of interleukin-1β production and gene expression in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci 16:218–223

    Article  CAS  PubMed  Google Scholar 

  35. Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108:29–34

    Article  CAS  PubMed  Google Scholar 

  36. Takema T, Yamaguchi M, Abiko Y (2000) Reduction of plasminogen activator activity stimulated by lipopolysaccharide from periodontal pathogen in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci 15:35–42. doi:10.1007/s101030050045

    Article  CAS  PubMed  Google Scholar 

  37. Basso FG, Pansani TN, Soares DG, Scheffel DL, Bagnato VS, de Souza Costa CA, Hebling J (2015) Biomodulation of inflammatory cytokines related to oral mucositis by low-level laser therapy. Photochem Photobiol 91:952–956. doi:10.1111/php.12445

    Article  CAS  PubMed  Google Scholar 

  38. Brade H (1999) Endotoxin in health and disease. Marcel Dekker, New York

    Google Scholar 

  39. Erac Y, Selli C, Filik P, Tosun M (2014) Effects of passage number on proliferation and store-operated calcium entry in A7r5 vascular smooth muscle cells. J Pharmacol Toxicol Methods 70:1–5. doi:10.1016/j.vascn.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  40. Hughes P, Marshall D, Reid Y, Parkes H, Gelber C (2007) The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 43:575–586. doi:10.2144/000112598

    Article  CAS  PubMed  Google Scholar 

  41. Pirkmajer S, Chibalin AV (2011) Serum starvation: caveat emptor. Am J Physiol Cell Physiol 301:C272–C279. doi:10.1152/ajpcell.00091.2011

    Article  CAS  PubMed  Google Scholar 

  42. Tran Hle B, Doan VN, Le HT, Ngo LT (2014) Various methods for isolation of multipotent human periodontal ligament cells for regenerative medicine. In Vitro Cell Dev Biol Anim 50:597–602. doi:10.1007/s11626-014-9748-z

    Article  PubMed  Google Scholar 

  43. Yang L, Yang Y, Wang S, Li Y, Zhao Z (2015) In vitro mechanical loading models for periodontal ligament cells: from two-dimensional to three-dimensional models. Arch Oral Biol 60:416–424. doi:10.1016/j.archoralbio.2014.11.012

    Article  PubMed  Google Scholar 

  44. Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S (2014) Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Prog Orthod 15:65. doi:10.1186/s40510-014-0065-6

    Article  PubMed  PubMed Central  Google Scholar 

  45. Calderín S, García-Núñez JA, Gómez C (2013) Short-term clinical and osteoimmunological effects of scaling and root planing complemented by simple or repeated laser phototherapy in chronic periodontitis. Lasers Med Sci 28:157–166. doi:10.1007/s10103-012-1104-5

    Article  PubMed  Google Scholar 

  46. Qadri T, Miranda L, Tunér J, Gustafsson A (2005) The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J Clin Periodontol 32:714–719

    Article  CAS  PubMed  Google Scholar 

  47. Bicakci AA, Kocoglu-Altan B, Toker H, Mutaf I, Sumer Z (2012) Efficiency of low-level laser therapy in reducing pain induced by orthodontic forces. Photomed Laser Surg 30:460–465. doi:10.1089/pho.2012.3245

    Article  CAS  PubMed  Google Scholar 

  48. Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat’s gingiva. Lasers Med Sci 23:331–335

    Article  PubMed  Google Scholar 

  49. Yoshida T, Yamaguchi M, Utsunomiya T et al (2009) Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling. Orthod Craniofacial Res 12:289–298. doi:10.1111/j.1601-6343.2009.01464.x

    Article  CAS  Google Scholar 

  50. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291

    Article  CAS  PubMed  Google Scholar 

  51. Wu JY, Chen CH, Wang CZ, Ho ML, Yeh ML, Wang YH (2013) Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-kB activity. PLoS One 8, e54067. doi:10.1371/journal.pone.0054067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Häkkinen L, Uitto VJ, Larjava H (2000) Cell biology of gingival wound healing. Periodontol 2000 24:127–152

    Article  PubMed  Google Scholar 

  53. Huang H, Williams RC, Kyrkanides S (2014) Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofac Orthop 146:620–632. doi:10.1016/j.ajodo.2014.07.007

    Article  Google Scholar 

  54. Yamamoto T, Kita M, Oseko F, Nakamura T, Imanishi J, Kanamura N (2006) Cytokine production in human periodontal ligament cells stimulated with Porphyromonas gingivalis. J Periodontal Res 41:554–559

    Article  CAS  PubMed  Google Scholar 

  55. Kasai K, Chou MY, Yamaguchi M (2015) Molecular effects of low-energy laser irradiation during orthodontic tooth movement. Semin Orthod 21:203–209

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Health and Medical Research Fund of Hong Kong (01121056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., McGrath, C., Jin, L. et al. Effect of diode low-level lasers on fibroblasts derived from human periodontal tissue: a systematic review of in vitro studies. Lasers Med Sci 31, 1493–1510 (2016). https://doi.org/10.1007/s10103-016-2026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2026-4

Keywords

Navigation