Skip to main content

Advertisement

Log in

Effects of geometric and heat transfer parameters on adsorption–desorption characteristics of CO2-activated carbon pair

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

A comprehensive 2-D transient heat and mass transfer analysis is carried out to identify the best reactor configuration in terms of better charge and discharge characteristics for a CO2-activated carbon (Maxsorb III)-based sorption systems. Reactors with different aspect ratios (AR) ranging from 0.35 to 7.8 are analysed for a wide range of convective heat transfer coefficient (h), constant pressure charging, and discharging cases. Effects of external cooling/heating fluid temperature, convective heat transfer coefficient (h), operating pressures are studied for both the charging (1–100 bar) and discharging (65–110 bar) cases. The adsorption cell with AR= 7.8 showed the best performance for CO2 adsorption/desorption in a fixed charge/discharge time of 300 s. For charging at 100 bar pressure, the reactor with AR= 7.8 resulted in an increment of 23.34% in CO2 uptake and reduction in maximum bed temperature by 27 K compared to that of the reactor with AR = 0.35. For h = 700 and 500 W/m2 K, the reactor with AR = 7.8 adsorbs 1300 g and desorbs 832 g of CO2/kg of adsorbent at 100 bar and 65 bar for external cooling and heating fluid temperature of 293 K and 800 K, respectively. The study concludes that better discharge performance can be attained by proper selection of AR even at a lower heating fluid temperature as the reactor with AR = 7.8 at 600 K can desorb 46 to 131 g of extra CO2 w.r.t. all ARs at 800 K. The proposed reactor configurations are supposed to play a vital role in designing of adsorption-based green refrigeration and carbon capture systems.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

b :

Henry’s constant (1/bar)

b 0 :

Pre-exponential coefficient in isotherm model (1/bar)

c :

Adsorbate uptake (kg/kg)

c 0 :

Limiting uptake (kg/kg)

C p :

Specific heat at constant pressure (J/kg K)

h :

Convective heat transfer coefficient (W/m2 K)

K :

Permeability of the bed (m2)

k :

Parameter accounting for the presence of graphite in bed (–)

k so :

Pre-exponential coefficient in the kinetic model (1/s)

M :

Molecular weight (kg/kmol)

n :

Heterogeneity factor (–)

P :

Pressure (bar)

Q st :

Isosteric heat of adsorption (J/mol)

R u :

Universal gas constant (J/mol K)

T :

Temperature (K)

t :

Time (s)

u :

Gas velocity (m/s)

ε :

Porosity (–)

y :

Mass ratio (–)

a :

Thermal conductivity (W/m K)

μ :

Gas viscosity (Pa s)

ρ :

Density of gas (kg/m3)

ads:

Adsorbed

eff:

Effective

eq:

Equilibrium

ext:

External

g:

Gas

gr:

Graphite

i:

Initial

s:

Adsorbent

t:

Total

AC:

Activated carbon

ACF:

Activated carbon fibres

ACS:

Activated carbon spheres

ADCS:

Adsorption cooling system

AR:

Aspect ratio

CCS:

Carbon capture and storage

CMS:

Carbon molecular sieves

CSAC:

Coconut shell-based activated carbon

GHG:

Greenhouse gas emission

MOF:

Metal organic framework

References

  • Afzal M, Sharma P (2018) Design of a large-scale metal hydride based hydrogen storage reactor: simulation and heat transfer optimization. Int J Hydrog Energy 43(29):13356–13372

    Article  CAS  Google Scholar 

  • Aviso KB, Janairo JIB, Promentilla MAB, Tan RR (2019) Prediction of CO2 storage site integrity with rough set-based machine learning. Clean Technol Environ Policy 21:1–10

    Article  Google Scholar 

  • Bandyopadhyay S (2019) Let us ‘bring back the forest’. Clean Technol Environ Policy 21:1381

    Article  Google Scholar 

  • Dey R, Gupta R, Samanta A (2018) Carbon dioxide capture under postcombustion conditions using amine-functionalized SBA-15: kinetics and multicyclic performance. Sep Sci Technol 53(16):2683–2694

    Article  CAS  Google Scholar 

  • Ducrot-Boisgontier C, Parmentier J, Faour A, Patarin J, Pirngruber GD (2010) FAU-type zeolite nanocasted carbon replicas for CO2 adsorption and hydrogen purification. Energy Fuels 24(6):3595–3602

    Article  CAS  Google Scholar 

  • Fan W, Chakraborty A, Kayal S (2016) Adsorption cooling cycles: insights into carbon dioxide adsorption on activated carbons. Energy 102:491–501

    Article  CAS  Google Scholar 

  • Freni A, Cipiti F, Cacciola G (2009) Finite element-based simulation of a metal hydride-based hydrogen storage tank. Int J Hydrog Energy 34(20):8574–8582

    Article  CAS  Google Scholar 

  • Gadkaree KP (1998) Carbon honeycomb structures for adsorption applications. Carbon 36(7–8):981–989

    Article  CAS  Google Scholar 

  • Garcia S, Pis JJ, Rubiera F, Pevida C (2013) Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture. Langmuir 29(20):6042–6052

    Article  CAS  Google Scholar 

  • Gautam, Kumar G, Sahoo S (2020) Performance improvement and comparisons of CO2 based adsorption cooling system using modified cycles employing various adsorbents: a comprehensive study of subcritical and transcritical cycles. Int J Refrig 112:136–154

    Article  CAS  Google Scholar 

  • Hauchhum L, Mahanta P (2014) Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed. Int J Energy Environ Eng 5(4):349–356

    Article  CAS  Google Scholar 

  • Helaly HO, Awad MM, El-Sharkawy II, Hamed AM (2019) Theoretical and experimental investigation of the performance of adsorption heat storage system. Appl Therm Eng 147:10–28

    Article  CAS  Google Scholar 

  • Himeno S, Komatsu T, Fujita S (2005) High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J Chem Eng Data 50(2):369–376

    Article  CAS  Google Scholar 

  • Ilis GG, Demir H, Mobedi M, Saha BB (2019) A new adsorbent bed design: optimization of geometric parameters and metal additive for the performance improvement. Appl Therm Eng 162:114270

    Article  Google Scholar 

  • Incropera FP, Lavine AS, Bergman TL, DeWitt DP (2013) Principles of heat and mass transfer. Wiley, New Delhi

    Google Scholar 

  • Jribi S, Saha BB, Koyama S, Bentaher H (2014) Modeling and simulation of an activated carbon-CO2 four bed based adsorption cooling system. Energy Convers Manag 78:985–991

    Article  CAS  Google Scholar 

  • Keshari V, Maiya MP (2018) Design and investigation of hydriding alloy based hydrogen storage reactor integrated with a pin fin tube heat exchanger. Int J Hydrog Energy 43(14):7081–7095

    Article  CAS  Google Scholar 

  • Khalil HA, Saurabh CK, Syakir MI, Fazita MN, Bhat A, Banerjee A, Fizree HM, Samsul R, Tahir PM (2019) Barrier properties of biocomposites/hybrid films. In: Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, pp 241–258

  • Kukkapalli VK, Kim S (2016) Optimization of internal cooling fins for metal hydride reactors. Energies 9(6):447

    Article  Google Scholar 

  • Loh WS, Ismail AB, Xi B, Ng KC, Chun WG (2012) Adsorption isotherms and isosteric enthalpy of adsorption for assorted refrigerants on activated carbons. J Chem Eng Data 57(10):2766–2773

    Article  CAS  Google Scholar 

  • Nag AK, Sarkar S (2018) Modelling of hybrid energy system for futuristic energy demand of an Indian rural area and their optimal and sensitivity analysis. Renew Energy 118:477–488

    Article  Google Scholar 

  • Nyamsi SN, Yang F, Zhang Z (2012) An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system–analytical method and numerical simulation. Int J Hydrog Energy 37(21):16078–16092

    Article  CAS  Google Scholar 

  • Pal A, El-Sharkawy II, Saha BB, Jribi S, Miyazaki T, Koyama S (2016) Experimental investigation of CO2 adsorption onto a carbon based consolidated composite adsorbent for adsorption cooling application. Appl Therm Eng 109:304–311

    Article  CAS  Google Scholar 

  • Patil KH, Sahoo S (2018) Charge characteristics of adsorbed natural gas storage system based on MAXSORB III. J Nat Gas Sci Eng 52:267–282

    Article  CAS  Google Scholar 

  • Plaza MG, García S, Rubiera F, Pis JJ, Pevida C (2010) Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chem Eng J 163(1–2):41–47

    Article  CAS  Google Scholar 

  • Prado DS, Amigo RCR, Paiva JL, Silva ECN (2018) Analysis of convection enhancing complex shaped adsorption vessels. Appl Therm Eng 141:352–367

    Article  CAS  Google Scholar 

  • Rahman KA (2011) Experimental and theoretical studies on adsorbed natural gas storage system using activated carbons. Dissertation, National University of Singapore

  • Rashidi NA, Yusup S, Borhan A, Loong LH (2014) Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon. Clean Technol Environ Policy 16(7):1353–1361

    Article  CAS  Google Scholar 

  • Sahoo PK, John M, Newalkar BL, Choudhary NV, Ayappa KG (2011) Filling characteristics for an activated carbon based adsorbed natural gas storage system. Ind Eng Chem Res 50(23):13000–13011

    Article  CAS  Google Scholar 

  • Sahoo PK, Prajwal BP, Dasetty SK, John M, Newalkar BL, Choudary NV, Ayappa KG (2014) Influence of exhaust gas heating and L/D ratios on the discharge efficiencies for an activated carbon natural gas storage system. Appl Energy 119:190–203

    Article  CAS  Google Scholar 

  • Samanta A, Zhao A, Shimizu GK, Sarkar P, Gupta R (2011) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51(4):1438–1463

    Article  Google Scholar 

  • Sarker MAI (2012) Equilibrium and mass transfer behaviour of CO2 adsorption on zeolites, carbon molecular sieve, and activated carbons. Dissertation, University of Regina

  • Sarker AI, Aroonwilas A, Veawab A (2017) Equilibrium and kinetic behaviour of CO2 adsorption onto zeolites, carbon molecular sieve and activated carbons. Energy Proc 114:2450–2459

    Article  CAS  Google Scholar 

  • Saxena R, Singh VK, Kumar EA (2014) Carbon dioxide capture and sequestration by adsorption on activated carbon. Energy Proc 54:320–329

    Article  CAS  Google Scholar 

  • Singh VK, Kumar EA (2017) Experimental investigation and thermodynamic analysis of CO2 adsorption on activated carbons for cooling system. J CO2 Util 17:290–304

    Article  CAS  Google Scholar 

  • Singh A, Maiya MP, Murthy SS (2015) Effects of heat exchanger design on the performance of a solid state hydrogen storage device. Int J Hydrog Energy 40(31):9733–9746

    Article  CAS  Google Scholar 

  • Singh VK, Kumar EA, Saha BB (2018) Adsorption isotherms, kinetics and thermodynamic simulation of CO2-CSAC pair for cooling application. Energy 160:1158–1173

    Article  CAS  Google Scholar 

  • Sircar S, Golden TC, Rao MB (1996) Activated carbon for gas separation and storage. Carbon 34(1):1–12

    Article  CAS  Google Scholar 

  • Specchia S, Tacchino S, Specchia V (2011) Facing the catalytic combustion of CH4/H2 mixtures into monoliths. Chem Eng J 167(2–3):622–633

    Article  CAS  Google Scholar 

  • Xiao J, Wang J, Cossement D, Bénard P, Chahine R (2012a) Finite element model for charge and discharge cycle of activated carbon hydrogen storage. Int J Hydrog Energy 37(1):802–810

    Article  CAS  Google Scholar 

  • Xiao J, Tong L, Cossement D, Bénard P, Chahine R (2012b) CFD simulation for charge–discharge cycle of cryo-adsorptive hydrogen storage on activated carbon. Int J Hydrog Energy 37(17):12893–12904

    Article  CAS  Google Scholar 

  • Xiao J, Liu Y, Wang J, Bénard P, Chahine R (2012c) Finite element simulation of heat and mass transfer in activated carbon hydrogen storage tank. Int J Heat Mass Transf 55(23–24):6864–6872

    Article  CAS  Google Scholar 

  • Xiao J, Peng R, Cossement D, Bénard P, Chahine R (2013) CFD model for charge and discharge cycle of adsorptive hydrogen storage on activated carbon. Int J Hydrog Energy 38(3):1450–1459

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Science and Technology (Science and Engineering Research Board), Govt. of India [Grant No. ECR/2018/000141] for financial assistance provided to carry out the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Sahoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, Sahoo, S. Effects of geometric and heat transfer parameters on adsorption–desorption characteristics of CO2-activated carbon pair. Clean Techn Environ Policy 23, 1065–1085 (2021). https://doi.org/10.1007/s10098-020-01866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-020-01866-3

Keywords

Navigation