Skip to main content
Log in

A decision-analytic framework for impact assessment part I: LCA and decision analysis

  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Life-cycle assessments (LCAs) are conducted to satisfy the aspiration of decision makers to consider the environment in their decision making. This paper reviews decision analysis and discusses how it can be used to structure the assessment and to integrate characterization and valuation. The decision analytic concepts of objectives (goals) and attributes (indicators of the degree to which an objective is achieved) are used to describe steps of the assessment of the entire impact chain. Decision analysis distinguishes among different types of objectives and attributes; it describes how these relate to each other. Impact indicators such as the Human Toxicity Potential are constructed attributes. A means-ends objectives network can show how the different constructed attributes relate to the objective of protecting the environment. As LCA takes disparate environmental impacts into account, it needs to assess their relative importance. Trade-off methods in decision analysis are grouped into utility theory and multicriteria decision aids; they have different advantages and disadvantages, but are all more sophisticated than simple weighting. The performance of the different trade-off methods has not yet been tested in an LCA context. In the second part of the paper, we present criteria for the development of characterization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrow, K. J. 1951. Social choice and individual values. New York: Wiley.

    Google Scholar 

  • Bana e Costa, C. A. 1990. Readings in multiple criteria decision aid. Berlin: Springer-Verlag.

    Google Scholar 

  • Basson, L. and J. G. Petrie. 1999. Decision Making during Early Stages of a Project Life Cycle: Roles for Multiple Criteria Decision Analysis, Life Cycle Assessment and Ecological Risk Assessments SETAC 20th Annual Meeting, Philadelphia, Society of Environmental Toxicology and Chemistry.

    Google Scholar 

  • Bras-Klapwijk, R. M. 1999. Adjusting Life Cycle Assessment Methodology for Use in Public Policy Discourse. Delft: Delft University of Technology: 280.

    Google Scholar 

  • Ekvall, T. 1999. System Expansion and Allocation in Life Cycle Assessment with Implications for Wastepaper Management. Technical Environmental Planning. Goteborg: Chalmers.

    Google Scholar 

  • Fava, J., F. Consoli, R. Denison, K. Dickson, T. Mohin and B. Vigon, Eds. 1993. A Conceptual Framework for Life-Cycle Impact Assessment. Pensacola, Fl, Society of Environmental Toxicology and Chemistry.

    Google Scholar 

  • Finnveden, G. 1997. Valuation Methods Within LCA — Where are the Values? Int.J. LCA 2(3): 163–169.

    Google Scholar 

  • Frischknecht, R. 2000. Allocation in life cycle inventory analysis for joint production. Int. J. LCA 5(2) 85–95.

    Google Scholar 

  • Giegrich, J. and S. Schmitz. 1997. Valuation as a Step in Impact Assessment: Methods and Case Study. In Environmental Life-Cycle Assessment, edited by M. A. Curran. New York: McGraw-Hill.

    Google Scholar 

  • Goedkoop, M. 1995. The Eco-indicator 95, 9523. Utrecht, NL: Netherlands Agency for Energy and the Environment, National Reuse of Waste Research Programme (NOH).

    Google Scholar 

  • Guitouni, A. and J. M. Martel. 1998. Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 109(2): 501–21.

    Article  Google Scholar 

  • Heijungs, R. 1998. Towards eco-efficiency with LCA’s prevention principle: an epistemological foundation of LCA using axioms. In Product Innovation and Eco-efficiency, edited by J. E. M. Klostermann and A. Tukker. Dortrecht: Kluwer: 175–186.

    Google Scholar 

  • Hertwich, E. G. 1999. Toxic Equivalency: Accounting for Human Health in Life-Cycle Impact Assessment. Energy and Resources Group. Berkeley: University of California: 237.

    Google Scholar 

  • Hertwich, E. G., J. K. Hammitt and W. S. Pease. 2000. A Theoretical Foundation for Life-Cycle Assessment: Recognizing the Role of Values in Environmental Decisionmaking. J. Ind. Ecol. 4(1): 13–28.

    Article  Google Scholar 

  • Hertwich, E. G., W. S. Pease and T. E. McKone. 1998. Evaluating toxic impact assessment methods: What works best? Environ. Sci. Technol. 32(5): A138-A144.

    Google Scholar 

  • Hofstetter, P. 1998. Perspectives in Life Cycle Impact Assessment: A Structured Approach to Combine Models of the Technosphere, Ecosphere and Valuesphere. Boston: Kluwer.

    Google Scholar 

  • Holdren, J. P. 1980. Integrated Assessment for Energy-Related Environmental Standards: A Summary of Issues and Findings. LBL Report 12799. Berkeley: Lawrence Berkeley Laboratory.

    Google Scholar 

  • Kahneman, D. and J. L. Knetsch. 1992. Valuing Public Goods: The Purchase of Moral Satisfaction. J. Environ. Econ. Manage: 57–70.

  • Kahneman, D., J. L. Knetsch and R. H. Thaler. 1991. Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias. J. Econ. Perspect. 5(1): 193–206.

    Google Scholar 

  • Kahneman, D., P. Slovic and A. Tversky. 1982. Judgment under uncertainty: heuristics and biases. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kahneman, D. and A. Tversky. 1979. Prospect Theory: An Analysis of Decision Under Risk. Econometrica 47: 263–291.

    Article  Google Scholar 

  • Keeney, R. L. 1992. Value-Focused Thinking: A Path to Creative Decisionmaking. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Keeney, R. L. and H. Raiffa. 1976. Decisions with multiple objectives: preferences and value tradeoffs. New York: Wiley.

    Google Scholar 

  • Kleindorfer, P. R., H. C. Kunreuther and P. G. H. Schoemaker. 1993. Decision Sciences: An Integrative Perspective. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lundie, S. and G. Huppes. 1999. Environmental Assessment of Products — The Ranges of Societal Preferences Method. Int. J. LCA 4(1): 7–15.

    Google Scholar 

  • Marsmann, M., S. O. Ryding, H. Udo de Haes, J. Fava, W. Owens, K. Brady, K. Saur and R. Schenck. 1999. In reply to Hertwich & Pease Int. J. LCA 3(4), S. 180–181 ‘ISO 14042 Restricts Use and Development of Impact Assessment’. Int. J. LCA 4(2): 65.

    Google Scholar 

  • Miettinen, P. and R. P. Hamalainen. 1997. How to benefit from decision analysis in environmental life cycle assessment. Eur. J. Oper. Res. 102(2): 279–294.

    Article  Google Scholar 

  • Owens, J. W, L. Barnthouse, J. Fava, K. Humphreys, B. Hunt, S. Noesen, J. A. Todd, B. Vigon, K. Weitz, et al. 1997. Life-Cycle Impact Assessment: The State-of-the Art. Pensacola, Fl: Society of Environmental Toxicology and Chemistry.

    Google Scholar 

  • Paruccini, M. M. 1994. Applying multiple criteria aid for decision to environmental management. Dordrecht: Kluwer.

    Google Scholar 

  • Popper, K. R. 1959. The logic of scientific discovery. New York: Basic Books.

    Google Scholar 

  • Raiffa, H. 1968. Decision Analysis. Reading, MA.: Addison-Wesley Publishing Co.

    Google Scholar 

  • Scheringer, M. 1999. Persistenze und Reichweite von Umweltchemikalien. Weinheim, Germany: Wiley-vch.

    Google Scholar 

  • Schoemaker, P. J. H. 1991. Choices Involving Uncertain Probabilities: Tests of Generalized Utility Models. J. Econ. Behav. Organ. 16: 295–317.

    Article  Google Scholar 

  • Shrader-Frechette, K. S. 1991. Risk and rationality: philosophical foundations for populist reforms. Berkeley: University of California Press.

    Google Scholar 

  • Simon, H. A. 1957. Models of Man. New York: Wiley.

    Google Scholar 

  • Tukker, A. 1998. Uncertainty in Life Cycle Impact Assessment of Toxic Releases. Int. J. LCA 3(5): 246–258.

    Article  CAS  Google Scholar 

  • von Neumann, J. and O. Morgenstern. 1944. Theory of games and economic behavior. Princeton: Princeton University Press.

    Google Scholar 

  • Wuebbles, D. J. 1995. Weighing Functions For Ozone Depletion and Greenhouse Gas Effects On Climate. Ann. Rev. Energy Environ. 20: 45–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar G. Hertwich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertwich, E.G., Hammitt, J.K. A decision-analytic framework for impact assessment part I: LCA and decision analysis. Int. J. LCA 6, 5–12 (2001). https://doi.org/10.1007/BF02977588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977588

Keywords

Navigation