Skip to main content

Advertisement

Log in

Economic viability and geographic distribution of centralized biogas plants: case study Croatia

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Current promising increase of agricultural investments in Croatia not only leads us to the implementation of new technologies and procedures but also leads to an increase of public awareness toward modern agricultural production. As a side effect, renewable energy sources, with special emphasis on biogas, are quickly coming under the loop. Because of this effect, a question of total biogas potential for the farming sector in Croatia becomes very important. One of the biggest obstacles in utilizing biogas on Croatian farms is its geographical displacement and small size. Through this paper economic viability and geographical distribution, as key parameters in determining realistic biogas potential on family farms, will be presented with special emphasis on the two most promising farming sectors: cows and pigs. As already mentioned, one of the biggest barriers in utilizing biogas in Croatia is the relatively small size of farms that are not capable of having economically viable biogas production. That is why community biogas plants will be important in increasing biogas utilization in Croatian farming sector. Presented methodology represents basics for regional analysis of biogas potential of a farming sector with Croatia as a case study with cost assessment of community biogas power plants considering transport distances, transport costs, and size of the power plants and family farms involved in community biogas production. The value of finding Croatia’s farming biogas potential is also important since farms are high-volume energy consumers in their everyday operations and part of that energy consumption can be compensated from renewable energy sources like biogas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Ghazawi Z, Abdulla F (2008) Mitigation of methane emissions from sanitary landfills and sewage treatment plants in Jordan. Clean Technol Environ Policy 10:341–350. doi:10.1007/s10098-008-0145-8

    Article  CAS  Google Scholar 

  • Bauer A, Leonhartsberger C, Bosch P, Amon B, Friedl A, Amon T (2010) Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technol Environ Policy 12:153–161. doi:10.1007/s10098-009-0236-1

    Article  CAS  Google Scholar 

  • Cosic B, Stanic Z, Duic N (2011) Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: case study Croatia. Energy 36:2017–2028. doi:10.1016/j.energy.2010.10.009

    Article  Google Scholar 

  • Dagnall S, Hill J, Pegg D (2000) Resource mapping and analysis of farm livestock manures—assessing the opportunities for biomass-to-energy schemes. Bioresour Technol 71:225–234. doi:10.1016/S0960-8524(99)00076-0

    Article  CAS  Google Scholar 

  • Dikshit AK, Chakraborty D (2006) A techno-economic feasibility study on removal of persistent colour and COD from anaerobically digested distillery effluent: a case study from India. Clean Technol Environ Policy 8:273–285. doi:10.1007/s10098-006-0058-3

    Article  CAS  Google Scholar 

  • Fan S, Freedman B, Gao J (2007) Potential environmental benefits from increased use of bioenergy in China. Environ Manage 40:504–515. doi:10.1007/s00267-006-0116-y

    Article  Google Scholar 

  • Flotats X, Bonmatí A, Fernández B, Magrí A (2009) Manure treatment technologies: on-farm versus centralized strategies. NE Spain as case study. Bioresour Technol 100:5519–5526. doi:10.1016/j.biortech.2008.12.050

    Article  CAS  Google Scholar 

  • Fowler P, Krajačić G, Lončar D, Duić N (2009) Modeling the energy potential of biomass—H2RES. Int J Hydrogen Energy 34:7027–7040

    Article  CAS  Google Scholar 

  • Hjort-Gregersen K (1999) Centralized biogas plants—integrated energy production, waste treatment and nutrient redistribution Facilities. Danish Institute of Agricultural and Fishery Economics, Esbjerg

    Google Scholar 

  • Jaber JO, Badran OO, Abu-Shikhah N (2004) Sustainable energy and environmental impact: role of renewables as clean and secure source of energy for the 21st century in Jordan. Clean Technol Environ Policy 6:174–186. doi:10.1007/s10098-003-0232-9

    Article  Google Scholar 

  • Kameswari KSB, Kalyanaraman C, Porselvam S, Thanasekaran K (2011) Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Technol Environ Policy. doi:10.1007/s10098-011-0391-z

    Google Scholar 

  • Kongsil P, Irvine JL, Yang PY (2010) Integrating an anaerobic bio-nest and an aerobic EMMC process as pretreatment of dairy wastewater for reuse: a pilot plant study. Clean Technol Environ Policy 12:301–311. doi:10.1007/s10098-009-0211-x

    Article  CAS  Google Scholar 

  • Krajačić G, Duić N, Carvalho M (2011) How to achieve a 100% RES electricity supply for Portugal? Appl Energy 88:508–517

    Article  Google Scholar 

  • Lin RLT, Irvine JL, Kao JCM, Yang PY (2009) EMMC technology for treatment/reuse of dilute dairy wastewater. Clean Technol Environ Policy. doi:10.1007/s10098-009-0228-1

    Google Scholar 

  • Lindboe HH (1995) Progress report on the economy of centralized biogas plants. Danish energy agency, Copenhagen

    Google Scholar 

  • Lund H (2006) The implementation of renewable energy systems—lessons learned from the Danish case. Energy 35:4003–4009

    Article  Google Scholar 

  • Pipatmanomai S, Kaewluan S, Vitidsant T (2009) Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl Energy 86:669–674

    Article  CAS  Google Scholar 

  • Pukšec T, Duić N (2010) Biogas potentials in Croatian farming sector. Strojarstvo 52:441–448

    Google Scholar 

  • Schaffner M, Bader HP, Scheidegger R (2010) Modeling the contribution of pig farming to pollution of the Thachin River. Clean Technol Environ Policy 12:407–425. doi:10.1007/s10098-009-0255-y

    Article  CAS  Google Scholar 

  • Schausberger P, Bosch P, Friedl A (2010) Modeling and simulation of coupled ethanol and biogas production. Clean Technol Environ Policy 12:163–170. doi:10.1007/s10098-009-0242-3

    Article  CAS  Google Scholar 

  • Schneider D, Duić N, Bogdan Ž (2007) Mapping the potential for decentralized energy generation based on renewable energy sources in the Republic of Croatia. Energy 32:1731–1744

    Article  Google Scholar 

  • Steininger KW, Voraberger H (2003) Exploiting the medium term biomass energy potentials in Austria: a comparison of costs and macroeconomic impact. Environ Resource Econ 24:359–377

    Article  Google Scholar 

  • Stürmer B, Schmid E, Eder MW (2011) Impacts of biogas plant performance factors on total substrate costs. Biomass and Bioenergy 35:1552–1560. doi:10.1016/j.biombioe.2010.12.030

    Article  Google Scholar 

  • Svensson LM, Christensson CK, Bjornsson CL (2006) Biogas production from crop residues on a farm-scale level in Sweden: scale, choice of substrate and utilisation rate most important parameters for financial feasibility. Bioprocess Biosyst Eng 29:137–142. doi:10.1007/s00449-006-0064-1

    Article  CAS  Google Scholar 

  • Taal M, Bulatov I, Klemeš J, Stehlik P (2003) Cost estimation and energy price forecast for economic evaluation of retrofit projects. Appl Therm Eng 23:1819–1835

    Article  Google Scholar 

  • Ucekaj V, Šarlej M, Puchýř R, Oral J, Stehlík P (2010) Efficient and environmentally friendly energy systems for microregions. Clean Technol Environ Policy 6:671–683. doi:10.1007/s10098-010-0316-2

    Article  Google Scholar 

  • Uddin SN, Taplin R, Yu X (2010) Towards a sustainable energy future—exploring current barriers and potential solutions in Thailand. Environ Dev Sustain 12:63–87. doi:10.1007/s10668-008-9180-1

    Article  Google Scholar 

  • Walla C, Schneeberger W (2008) The optimal size for biogas plants. Biomass and Bioenergy 32:551–557. doi:10.1016/j.biombioe.2007.11.009

    Article  CAS  Google Scholar 

  • White AJ, Kirk DW, Graydon JW (2011) Analysis of small-scale biogas utilization systems on Ontario cattle farms. Renew Energy 36:1019–1025. doi:10.1016/j.renene.2010.08.034

    Article  CAS  Google Scholar 

  • Yagüe M, Iguácel F, Orús F, Quílez D (2008) Cost assessment of manure application equipment. In: Magrí A, Prenafeta-Boldú FX, Flotats X (eds) Book of proceedings of first Spanish congress of integrated management of livestock. Servive Point, Barcelona, p 424

    Google Scholar 

  • Yiridoe EK, Gordon R, Brown BB (2009) Nonmarket cobenefits and economic feasibility of on-farm biogas energy production. Energy Policy 37:1170–1179. doi:10.1016/j.enpol.2008.11.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Pukšec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukšec, T., Duić, N. Economic viability and geographic distribution of centralized biogas plants: case study Croatia. Clean Techn Environ Policy 14, 427–433 (2012). https://doi.org/10.1007/s10098-012-0460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-012-0460-y

Keywords

Navigation