Skip to main content

Advertisement

Log in

Unpredictable susceptibility of emerging clinical moulds to tri-azoles: review of the literature and upcoming challenges for mould identification

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Tri-azoles represent the front-line drugs for the treatment of mould diseases; nevertheless, some emerging moulds, such as Fusarium spp., Scedosporium spp., Mucorales and others, may be less susceptible or resistant to these antifungals. A review of the literature was conducted on the susceptibility of rare moulds to the tri-azoles itraconazole, posaconazole and voriconazole. Particular attention was paid to isolates identified by molecular analyses. The range of susceptibility values described for the three tri-azoles was frequently large (from 0.06 to >16), and a high variability was found within each species; isolates were rarely reported as entirely susceptible to all tri-azoles. In addition, the susceptibility of 76 emerging moulds from our collection (including Hypocreales, Dothideomycetes, Scedosporium spp., Mucorales and rare Aspergillus spp.) to itraconazole and voriconazole was determined by the Clinical and Laboratory Standards Institute (CLSI) M38-A2 and European Committee for Antimicrobial Susceptibility Testing (EUCAST) methods. Susceptibility discrepancies (of two dilutions) were found comparing CLSI and EUCAST for Dothideomycetes; the values for the remaining moulds were similar. More practical, faster and inexpensive susceptibility tools are welcome for testing emerging moulds, as these tests still represent a critical tool to support clinicians on the selection of proper antifungal treatment. The susceptibility of emerging moulds to tri-azoles cannot be predicted exclusively following mould identification, as the isolates’ susceptibilities showed highly variable values. Some emerging moulds still remain very difficult to identity, even following standard molecular analyses which result in complex fungal collections. This fact limits the definition of epidemiological cut-offs and clinical breakpoints that are still imperative for emerging moulds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandrasekar P (2009) Invasive mold infections: recent advances in management approaches. Leuk Lymphoma 50:703–715

    Article  CAS  PubMed  Google Scholar 

  2. Lackner M, Rezusta A, Villuendas MC, Palacian MP, Meis JF, Klaassen CH (2011) Infection and colonisation due to Scedosporium in Northern Spain. An in vitro antifungal susceptibility and molecular epidemiology study of 60 isolates. Mycoses 54:12–21

    Article  PubMed  Google Scholar 

  3. Muhammed M, Anagnostou T, Desalermos A, Kourkoumpetis TK, Carneiro HA, Glavis-Bloom J et al (2013) Fusarium infection: report of 26 cases and review of 97 cases from the literature. Medicine (Baltimore) 92:305–316

    Article  PubMed  Google Scholar 

  4. Espinel-Ingroff A, Johnson E, Hockey H, Troke P (2008) Activities of voriconazole, itraconazole and amphotericin B in vitro against 590 moulds from 323 patients in the voriconazole Phase III clinical studies. J Antimicrob Chemother 61:616–620

    Article  CAS  PubMed  Google Scholar 

  5. Vitale RG, de Hoog GS, Schwarz P, Dannaoui E, Deng S, Machouart M et al (2012) Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. J Clin Microbiol 50:66–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chowdhary A, Agarwal K, Kathuria S, Gaur SN, Randhawa HS, Meis JF (2014) Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a global overview. Crit Rev Microbiol 40:30–48

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal R, Aggarwal AN, Gupta D, Bal A, Das A (2009) Case report: A rare cause of miliary nodules—allergic bronchopulmonary aspergillosis. Br J Radiol 82:e151–e154

    Article  CAS  PubMed  Google Scholar 

  8. Ishiguro T, Takayanagi N, Kagiyama N, Shimizu Y, Yanagisawa T, Sugita Y (2014) Clinical characteristics of biopsy-proven allergic bronchopulmonary mycosis: variety in causative fungi and laboratory findings. Intern Med 53:1407–1411

    Article  PubMed  Google Scholar 

  9. Lass-Flörl C (2011) Triazole antifungal agents in invasive fungal infections: a comparative review. Drugs 71:2405–2419

    Article  PubMed  Google Scholar 

  10. Segal BH, Herbrecht R, Stevens DA, Ostrosky-Zeichner L, Sobel J, Viscoli C et al (2008) Defining responses to therapy and study outcomes in clinical trials of invasive fungal diseases: Mycoses Study Group and European Organization for Research and Treatment of Cancer consensus criteria. Clin Infect Dis 47:674–683

    Article  PubMed Central  PubMed  Google Scholar 

  11. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA et al (2008) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46:327–360

    Article  CAS  PubMed  Google Scholar 

  12. Araujo R, Pina-Vaz C, Rodrigues AG (2007) Susceptibility of environmental versus clinical strains of pathogenic Aspergillus. Int J Antimicrob Agents 29:108–111

    Article  CAS  PubMed  Google Scholar 

  13. Araujo R, Coutinho I, Espinel-Ingroff A (2008) Rapid method for testing the susceptibility of Aspergillus fumigatus to amphotericin B, itraconazole, voriconazole and posaconazole by assessment of oxygen consumption. J Antimicrob Chemother 62:1277–1280

    Article  CAS  PubMed  Google Scholar 

  14. Balajee SA, Nickle D, Varga J, Marr KA (2006) Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot Cell 5:1705–1712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD et al (2009) Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. J Clin Microbiol 47:3138–3141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL (2008) Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother 52:1244–1251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Miyazaki M, Horii T, Hata K, Watanabe NA, Nakamoto K, Tanaka K et al (2011) In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother 55:4652–4658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lackner M, de Hoog GS, Verweij PE, Najafzadeh MJ, Curfs-Breuker I, Klaassen CH et al (2012) Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother 56:2635–2642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, Pasqualotto AC et al (2009) Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis 15:1068–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Verweij PE, Howard SJ, Melchers WJ, Denning DW (2009) Azole-resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist Updat 12:141–147

    Article  CAS  PubMed  Google Scholar 

  21. Biancalana FS, Lyra L, Moretti ML, Schreiber AZ (2011) Susceptibility testing of terbinafine alone and in combination with amphotericin B, itraconazole, or voriconazole against conidia and hyphae of dematiaceous molds. Diagn Microbiol Infect Dis 71:378–385

    Article  CAS  PubMed  Google Scholar 

  22. Alastruey-Izquierdo A, Castelli MV, Cuesta I, Zaragoza O, Monzón A, Mellado E et al (2009) In vitro activity of antifungals against Zygomycetes. Clin Microbiol Infect 15:71–76

    Article  CAS  PubMed  Google Scholar 

  23. Johnson EM, Szekely A, Warnock DW (1998) In-vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J Antimicrob Chemother 42:741–745

    Article  CAS  PubMed  Google Scholar 

  24. Iqbal NJ, Boey A, Park BJ, Brandt ME (2008) Determination of in vitro susceptibility of ocular Fusarium spp. isolates from keratitis cases and comparison of Clinical and Laboratory Standards Institute M38-A2 and E test methods. Diagn Microbiol Infect Dis 62:348–350

    Article  CAS  PubMed  Google Scholar 

  25. Lalitha P, Sun CQ, Prajna NV, Karpagam R, Geetha M, O’Brien KS et al (2014) In vitro susceptibility of filamentous fungal isolates from a corneal ulcer clinical trial. Am J Ophthalmol 157:318–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Biswas C, Sorrell TC, Djordjevic JT, Zuo X, Jolliffe KA, Chen SC (2013) In vitro activity of miltefosine as a single agent and in combination with voriconazole or posaconazole against uncommon filamentous fungal pathogens. J Antimicrob Chemother 68:2842–2846

    Article  CAS  PubMed  Google Scholar 

  27. Debourgogne A, de Hoog S, Lozniewski A, Machouart M (2012) Amphotericin B and voriconazole susceptibility profiles for the Fusarium solani species complex: comparison between the E-test and CLSI M38-A2 microdilution methodology. Eur J Clin Microbiol Infect Dis 31:615–618

    Article  CAS  PubMed  Google Scholar 

  28. Homa M, Shobana CS, Singh YR, Manikandan P, Selvam KP, Kredics L et al (2013) Fusarium keratitis in South India: causative agents, their antifungal susceptibilities and a rapid identification method for the Fusarium solani species complex. Mycoses 56:501–511

    Article  CAS  PubMed  Google Scholar 

  29. Kondori N, Svensson E, Mattsby-Baltzer I (2011) In vitro susceptibility of filamentous fungi to itraconazole, voriconazole and posaconazole by Clinical and Laboratory Standards Institute reference method and E-test. Mycoses 54:e318–e322

    Article  CAS  PubMed  Google Scholar 

  30. Lass-Flörl C, Mayr A, Perkhofer S, Hinterberger G, Hausdorfer J, Speth C et al (2008) Activities of antifungal agents against yeasts and filamentous fungi: assessment according to the methodology of the European Committee on Antimicrobial Susceptibility Testing. Antimicrob Agents Chemother 52:3637–3641

    Article  PubMed Central  PubMed  Google Scholar 

  31. Taylan Sekeroglu H, Erdem E, Yagmur M, Gumral R, Ersoz R, Ilkit M et al (2012) Successful medical management of recalcitrant Fusarium solani keratitis: molecular identification and susceptibility patterns. Mycopathologia 174:233–237

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Wang Z, Li R, Luo S, Sun X (2008) In vitro evaluation of combination antifungal activity against Fusarium species isolated from ocular tissues of keratomycosis patients. Am J Ophthalmol 146:724–728

    Article  CAS  PubMed  Google Scholar 

  33. Pereira GH, de Angelis DA, Brasil RA, dos Anjos Martins M, de Matos Castro e Silva D, Szeszs MW et al (2013) Disseminated amphotericin-resistant fusariosis in acute leukemia patients: report of two cases. Mycopathologia 175:107–114

    Article  PubMed  Google Scholar 

  34. Lalitha P, Shapiro BL, Srinivasan M, Prajna NV, Acharya NR, Fothergill AW et al (2007) Antimicrobial susceptibility of Fusarium, Aspergillus, and other filamentous fungi isolated from keratitis. Arch Ophthalmol 125:789–793

    Article  CAS  PubMed  Google Scholar 

  35. de Souza M, Matsuzawa T, Lyra L, Busso-Lopes AF, Gonoi T, Schreiber AZ et al (2014) Fusarium napiforme systemic infection: case report with molecular characterization and antifungal susceptibility tests. Springerplus 3:492

    Article  PubMed Central  PubMed  Google Scholar 

  36. Edelstein SL, Akduman L, Durham BH, Fothergill AW, Hsu HY (2012) Resistant Fusarium keratitis progressing to endophthalmitis. Eye Contact Lens 38:331–335

    Article  PubMed  Google Scholar 

  37. Almyroudis NG, Sutton DA, Fothergill AW, Rinaldi MG, Kusne S (2007) In vitro susceptibilities of 217 clinical isolates of zygomycetes to conventional and new antifungal agents. Antimicrob Agents Chemother 51:2587–2590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Singh J, Rimek D, Kappe R (2005) In vitro susceptibility of 15 strains of zygomycetes to nine antifungal agents as determined by the NCCLS M38-A microdilution method. Mycoses 48:246–250

    Article  CAS  PubMed  Google Scholar 

  39. Escribano P, Peláez T, Muñoz P, Bouza E, Guinea J (2013) Is azole resistance in Aspergillus fumigatus a problem in Spain? Antimicrob Agents Chemother 57:2815–2820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zbinden A, Imhof A, Wilhelm MJ, Ruschitzka F, Wild P, Bloemberg GV et al (2012) Fatal outcome after heart transplantation caused by Aspergillus lentulus. Transpl Infect Dis 14:E60–E63

    Article  CAS  PubMed  Google Scholar 

  41. Oechsler RA, Feilmeier MR, Miller D, Shi W, Hofling-Lima AL, Alfonso EC (2013) Fusarium keratitis: genotyping, in vitro susceptibility and clinical outcomes. Cornea 32:667–673

    Article  PubMed Central  PubMed  Google Scholar 

  42. Peláez T, Alvarez-Pérez S, Mellado E, Serrano D, Valerio M, Blanco JL et al (2013) Invasive aspergillosis caused by cryptic Aspergillus species: a report of two consecutive episodes in a patient with leukaemia. J Med Microbiol 62:474–478

    Article  PubMed  Google Scholar 

  43. Alastruey-Izquierdo A, Alcazar-Fuoli L, Cuenca-Estrella M (2014) Antifungal susceptibility profile of cryptic species of Aspergillus. Mycopathologia 178:427–433

    Article  CAS  PubMed  Google Scholar 

  44. Singh PK, Kathuria S, Agarwal K, Gaur SN, Meis JF, Chowdhary A (2013) Clinical significance and molecular characterization of nonsporulating molds isolated from the respiratory tracts of bronchopulmonary mycosis patients with special reference to basidiomycetes. J Clin Microbiol 51:3331–3337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Arabatzis M, Kambouris M, Kyprianou M, Chrysaki A, Foustoukou M, Kanellopoulou M et al (2011) Polyphasic identification and susceptibility to seven antifungals of 102 Aspergillus isolates recovered from immunocompromised hosts in Greece. Antimicrob Agents Chemother 55:3025–3030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kano R, Shibahashi A, Fujino Y, Sakai H, Mori T, Tsujimoto H et al (2013) Two cases of feline orbital aspergillosis due to Aspergillus udagawae and A. viridinutans. J Vet Med Sci 75:7–10

    Article  PubMed  Google Scholar 

  47. Barrs VR, van Doorn TM, Houbraken J, Kidd SE, Martin P, Pinheiro MD et al (2013) Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats, and dogs. PLoS One 8:e64871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dannaoui E, Meletiadis J, Mouton JW, Meis JF, Verweij PE; Eurofung Network (2003) In vitro susceptibilities of zygomycetes to conventional and new antifungals. J Antimicrob Chemother 51:45–52

    Article  CAS  PubMed  Google Scholar 

  49. Sun QN, Fothergill AW, McCarthy DI, Rinaldi MG, Graybill JR (2002) In vitro activities of posaconazole, itraconazole, voriconazole, amphotericin B, and fluconazole against 37 clinical isolates of zygomycetes. Antimicrob Agents Chemother 46:1581–1582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Gómez-López A, Cuenca-Estrella M, Monzón A, Rodriguez-Tudela JL (2001) In vitro susceptibility of clinical isolates of Zygomycota to amphotericin B, flucytosine, itraconazole and voriconazole. J Antimicrob Chemother 48:919–921

    Article  PubMed  Google Scholar 

  51. Pfaller MA, Messer SA, Hollis RJ, Jones RN; SENTRY Participants Group (2002) Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus spp. and other filamentous fungi: report from SENTRY Antimicrobial Surveillance Program, 2000. Antimicrob Agents Chemother 46:1032–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Espinel-Ingroff A (2001) In vitro fungicidal activities of voriconazole, itraconazole, and amphotericin B against opportunistic moniliaceous and dematiaceous fungi. J Clin Microbiol 39:954–958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Duddy NE, Moore CB, Howard SJ, Denning DW (2009) In vitro susceptibility of non-Aspergillus allergenic fungal species to azoles. J Antimicrob Chemother 63:834–836

    Article  CAS  PubMed  Google Scholar 

  54. Balajee SA, Gribskov J, Brandt M, Ito J, Fothergill A, Marr KA (2005) Mistaken identity: Neosartorya pseudofischeri and its anamorph masquerading as Aspergillus fumigatus. J Clin Microbiol 43:5996–5999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Vinh DC, Shea YR, Sugui JA, Parrilla-Castellar ER, Freeman AF, Campbell JW et al (2009) Invasive aspergillosis due to Neosartorya udagawae. Clin Infect Dis 49:102–111

    Article  PubMed Central  PubMed  Google Scholar 

  56. Vinh DC, Shea YR, Jones PA, Freeman AF, Zelazny A, Holland SM (2009) Chronic invasive aspergillosis caused by Aspergillus viridinutans. Emerg Infect Dis 15:1292–1294

    Article  PubMed Central  PubMed  Google Scholar 

  57. Bueno JG, Martinez C, Zapata B, Sanclemente G, Gallego M, Mesa AC (2010) In vitro activity of fluconazole, itraconazole, voriconazole and terbinafine against fungi causing onychomycosis. Clin Exp Dermatol 35:658–663

    Article  CAS  PubMed  Google Scholar 

  58. Pujol I, Guarro J, Llop C, Soler L, Fernández-Ballart J (1996) Comparison study of broth macrodilution and microdilution antifungal susceptibility tests for the filamentous fungi. Antimicrob Agents Chemother 40:2106–2110

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Wang H, Xiao M, Kong F, Chen S, Dou HT, Sorrell T et al (2011) Accurate and practical identification of 20 Fusarium species by seven-locus sequence analysis and reverse line blot hybridization, and an in vitro antifungal susceptibility study. J Clin Microbiol 49:1890–1898

    Article  PubMed Central  PubMed  Google Scholar 

  60. Trabelsi S, Hariga D, Khaled S (2010) First case of Trichoderma longibrachiatum infection in a renal transplant recipient in Tunisia and review of the literature. Tunis Med 88:52–57

    PubMed  Google Scholar 

  61. Alastruey-Izquierdo A, Mellado E, Peláez T, Pemán J, Zapico S, Alvarez M et al (2013) Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob Agents Chemother 57:3380–3387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Denning DW, Park S, Lass-Florl C, Fraczek MG, Kirwan M, Gore R et al (2011) High-frequency triazole resistance found in nonculturable Aspergillus fumigatus from lungs of patients with chronic fungal disease. Clin Infect Dis 52:1123–1129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Amorim A, Guedes-Vaz L, Araujo R (2010) Susceptibility to five antifungals of Aspergillus fumigatus strains isolated from chronically colonised cystic fibrosis patients receiving azole therapy. Int J Antimicrob Agents 35:396–399

    Article  CAS  PubMed  Google Scholar 

  64. Larone DH (1995) Medically important fungi: a guide to identification. ASM Press, Washington, DC

    Google Scholar 

  65. Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108

    Article  CAS  PubMed  Google Scholar 

  67. Clinical and Laboratory Standards Institute (CLSI) (2008) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved standard—Second edition. CLSI document M38-A2. CLSI, Wayne, PA

  68. Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing (2008) EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin Microbiol Infect 14:982–984

    Article  Google Scholar 

  69. Araujo R, Espinel-Ingroff A (2009) Comparison of assessment of oxygen consumption, Etest, and CLSI M38-A2 broth microdilution methods for evaluation of the susceptibility of Aspergillus fumigatus to posaconazole. Antimicrob Agents Chemother 53:4921–4923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. De Brucker K, Cammue BP, Thevissen K (2011) Apoptosis-inducing antifungal peptides and proteins. Biochem Soc Trans 39:1527–1532

    Article  PubMed  Google Scholar 

  71. Leal SM Jr, Roy S, Vareechon C, Carrion SD, Clark H, Lopez-Berges MS et al (2013) Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum. PLoS Pathog 9:e1003436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Chaudhary PM, Tupe SG, Deshpande MV (2013) Chitin synthase inhibitors as antifungal agents. Mini Rev Med Chem 13:222–236

    CAS  PubMed  Google Scholar 

  73. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL et al (2011) Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7:e1002257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125:S3–S13

    Article  CAS  PubMed  Google Scholar 

  75. van der Linden JW, Snelders E, Kampinga GA, Rijnders BJ, Mattsson E, Debets-Ossenkopp YJ et al (2011) Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg Infect Dis 17:1846–1854

    Article  PubMed Central  PubMed  Google Scholar 

  76. Yew SM, Chan CL, Lee KW, Na SL, Tan R, Hoh CC et al (2014) A five-year survey of dematiaceous fungi in a tropical hospital reveals potential opportunistic species. PLoS One 9:e104352

    Article  PubMed Central  PubMed  Google Scholar 

  77. Maertens J, Marchetti O, Herbrecht R, Cornely OA, Flückiger U, Frêre P et al (2011) European guidelines for antifungal management in leukemia and hematopoietic stem cell transplant recipients: summary of the ECIL 3—2009 update. Bone Marrow Transplant 46:709–718

    Article  CAS  PubMed  Google Scholar 

  78. Chowdhary A, Meis JF, Guarro J, de Hoog GS, Kathuria S, Arendrup MC et al (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect 20:47–75

    Article  CAS  PubMed  Google Scholar 

  79. Cornely OA, Arikan-Akdagli S, Dannaoui E, Groll AH, Lagrou K, Chakrabarti A et al (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clin Microbiol Infect 20:5–26

    Article  CAS  PubMed  Google Scholar 

  80. Cornely OA, Cuenca-Estrella M, Meis JF, Ullmann AJ (2014) European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Fungal Infection Study Group (EFISG) and European Confederation of Medical Mycology (ECMM) 2013 joint guidelines on diagnosis and management of rare and emerging fungal diseases. Clin Microbiol Infect 20:1–4

    Article  PubMed  Google Scholar 

  81. Tortorano AM, Richardson M, Roilides E, van Diepeningen A, Caira M, Munoz P et al (2014) ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin Microbiol Infect 20:27–46

    Article  CAS  PubMed  Google Scholar 

  82. Araujo R, Costa-de-Oliveira S, Coutinho I, Rodrigues AG, Pina-Vaz C (2009) Evaluating the resistance to posaconazole by E-test and CLSI broth microdilution methodologies of Candida spp. and pathogenic moulds. Eur J Clin Microbiol Infect Dis 28:1137–1140

    Article  CAS  PubMed  Google Scholar 

  83. Colosi IA, Faure O, Dessaigne B, Bourdon C, Lebeau B, Colosi HA et al (2012) Susceptibility of 100 filamentous fungi: comparison of two diffusion methods, Neo-Sensitabs and E-test, for amphotericin B, caspofungin, itraconazole, voriconazole and posaconazole. Med Mycol 50:378–385

    Article  CAS  PubMed  Google Scholar 

  84. Barker AP, Horan JL, Slechta ES, Alexander BD, Hanson KE (2014) Complexities associated with the molecular and proteomic identification of Paecilomyces species in the clinical mycology laboratory. Med Mycol 52:537–545

    Article  CAS  PubMed  Google Scholar 

  85. Lu Q, Gerrits van den Ende AH, Bakkers JM, Sun J, Lackner M, Najafzadeh MJ et al (2011) Identification of Pseudallescheria and Scedosporium species by three molecular methods. J Clin Microbiol 49:960–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Divakara ST, Santosh P, Aiyaz M, Venkata Ramana M, Hariprasad P, Nayaka SC et al (2014) Molecular identification and characterization of Fusarium spp. associated with sorghum seeds. J Sci Food Agric 94:1132–1139

    Article  CAS  PubMed  Google Scholar 

  87. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J (2007) Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya. Stud Mycol 59:147–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Serrano R, Gusmão L, Amorim A, Araujo R (2011) Rapid identification of Aspergillus fumigatus within the section Fumigati. BMC Microbiol 11:82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Caramalho R, Gusmão L, Lackner M, Amorim A, Araujo R (2013) SNaPAfu: a novel single nucleotide polymorphism multiplex assay for Aspergillus fumigatus direct detection, identification and genotyping in clinical specimens. PLoS One 8:e75968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Araujo R (2014) Towards the genotyping of fungi: methods, benefits and challenges. Curr Fungal Infect Rep 8:203–210

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Pfizer Inc. (grant no. IIR#WS1948668). RA was supported by Fundação para a Ciência e a Tecnologia (FCT) Ciência 2007 and by the European Social Fund. MO received a research fellowship from FCT (SFRH/BPD/66071/2009). IPATIMUP and INEB are associate laboratories of the Portuguese Ministry of Science, Technology and Higher Education and are partially supported by FCT. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Conflict of interest

The authors have no financial relationship with the organisation that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Araujo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, R., Oliveira, M., Amorim, A. et al. Unpredictable susceptibility of emerging clinical moulds to tri-azoles: review of the literature and upcoming challenges for mould identification. Eur J Clin Microbiol Infect Dis 34, 1289–1301 (2015). https://doi.org/10.1007/s10096-015-2374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2374-1

Keywords

Navigation