Skip to main content

Advertisement

Log in

Towards the Genotyping of Fungi: Methods, Benefits and Challenges

  • Advances in Diagnosis of Invasive Fungal Infections (U Binder, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Several fungi have recently been described as capable to recombine and drive large genetic diversity in clinical samples and in the environment. Among the genotyping methods, microsatellite analysis is frequently reported as preferred for studying local epidemiology, but single nucleotide polymorphisms represent the best markers for evaluation of recombination, linkage and aneuploidy. The future of typing analyses may reside in strategies capable of cataloging the whole genome and complete microbial diversity. The present review focuses the current strategies employed for fungal genotyping and evaluation of genetic diversity, and the challenges of next generation sequencing with regard to this topic. Typing methods establish the genetic identity of fungal isolates and allow clarification of outbreaks and transmission of strains between individuals, comparison of chronic colonization versus patients carrying unrelated strains, detection of co-evolution of pathogenic and/or drug-resistant strains. The next advances in molecular mycology may revolutionize clinics and redesign concepts of microbial evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pagano L, Caira M, Candoni A, et al. The epidemiology of fungal infections in patients with hematologic malignancies: the SEIFEM-2004 study. Haematologica. 2006;91:1068–75.

    PubMed  Google Scholar 

  2. Singh N, Paterson DL. Aspergillus infections in transplant recipients. Clin Microbiol Rev. 2005;18:44–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Araujo R, Cabral JP, Rodrigues AG. Air filtration systems and restrictive access conditions improve indoor air quality in clinical units: Penicillium as a general indicator of hospital indoor fungal levels. Am J Infect Control. 2008;36:129–34.

    Article  PubMed  Google Scholar 

  4. Alberti C, Bouakline A, Ribaud P, et al. Relationship between environmental fungal contamination and the incidence of invasive aspergillosis in haematology patients. J Hosp Infect. 2001;48:198–206.

    Article  CAS  PubMed  Google Scholar 

  5. Vonberg R, Gastmeier P. Nosocomial aspergillosis in outbreak settings. J Hosp Infect. 2006;63:246–54.

    Article  PubMed  Google Scholar 

  6. Montagna M, Lovero G, Borghi E, et al. Candidemia in intensive care unit: a nationwide prospective observational survey (GISIA-3 study) and review of the European literature from 2000 through 2013. Eur Rev Med Pharmacol Sci. 2014;18:661–74.

    CAS  PubMed  Google Scholar 

  7. Pfaller M, Neofytos D, Diekema D, et al. Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance®) registry, 2004-2008. Diagn Microbiol Infect Dis. 2012;74:323–31.

    Article  PubMed  Google Scholar 

  8. Araujo R, Carneiro A, Costa-Oliveira S, et al. Fungal infections after haematology unit renovation: evidence of clinical, environmental and economical impact. Eur J Haematol. 2008;80:436–43.

    Article  PubMed  Google Scholar 

  9. Samson R, Hong S, Peterson SW, et al. Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya. Stud Mycol. 2007;59:147–203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yaguchi T, Horie Y, Tanaka R, et al. Molecular phylogenetics of multiple genes on Aspergillus section Fumigati isolated from clinical specimens in Japan. Jpn J Med Mycol. 2007;48:37–46.

    Article  CAS  Google Scholar 

  11. Serrano R, Gusmão L, Amorim A, Araujo R. Rapid identification of Aspergillus fumigatus within the section Fumigati. BMC Microbiol. 2011;11:82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Butler G. Fungal sex and pathogenesis. Clin Microbiol Rev. 2010;23:140–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schurko A, Neiman M, Logsdon Jr JM. Signs of sex: what we know and how we know it. Trends Ecol Evol. 2009;24:208–17.

    Article  PubMed  Google Scholar 

  14. Fisher M, Hanage WP, de Hoog S, et al. Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen Penicillium marneffei. PLoS Pathog. 2005;1:e20.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hadany L, Comeron JM. Why are sex and recombination so common? Ann N Y Acad Sci. 2008;1133:26–43.

    Article  PubMed  Google Scholar 

  16. Ni M, Feretzaki M, Sun S, et al. Sex in Fungi. Annu Rev Genet. 2011;45:405–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dyer P, O'Gorman CM. A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr Opin Microbiol. 2011;14:649–54.

    Article  PubMed  Google Scholar 

  18. O'Gorman C, Fuller HT, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457:471–4.

    Article  PubMed  Google Scholar 

  19. Böhm J, Hoff B, O'Gorman CM, et al. Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A. 2013;110:1476–81. Description of the first time of sexual reproduction in the environmental mold Penicillium chrysogenum.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Li W, Raoult D, Fournier P-E. Bacterial strain typing in the genomic era. FEMS Microbiol Rev. 2009;33:892–916.

    Article  CAS  PubMed  Google Scholar 

  21. Rho J, Shin JH, Song JW, et al. Molecular investigation of two consecutive nosocomial clusters of Candida tropicalis candiduria using pulsed-field gel electrophoresis. J Microbiol. 2004;42:80–6.

    CAS  PubMed  Google Scholar 

  22. Khadraoui N, Kallel K, Bouchami O, et al. Pulsed Field Gel Electrophoresis types of Candida albicans isolates from an intensive care unit in a Tunisian hospital. Ann Biol Clin. 2011;69:289–94.

    CAS  Google Scholar 

  23. Saghrouni F, Ben Abdeljelil J, Boukadida J, Ben Said M. Molecular methods for strain typing of Candida albicans: a review. J Appl Microbiol. 2013;114:1559–74.

    Article  CAS  PubMed  Google Scholar 

  24. Gaitanis G, Bassukas ID, Velegraki A. The range of molecular methods for typing Malassezia. Curr Opin Infect Dis. 2009;22:119–25.

    Article  CAS  PubMed  Google Scholar 

  25. Miller J. Whole-genome mapping: a new paradigm in strain-typing technology. J Clin Microbiol. 2013;51:1066–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Woo P, Leung SY, To KK, et al. Internal transcribed spacer region sequence heterogeneity in Rhizopus microsporus: implications for molecular diagnosis in clinical microbiology laboratories. J Clin Microbiol. 2010;48:208–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chae H, Jang GE, Kim NH, et al. Classification of Cryptococcus neoformans and yeast-like fungus isolates from pigeon droppings by colony phenotyping and ITS genotyping and their seasonal variations in Korea. Avian Dis. 2012;56:58–64.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Ndoye M, Zhang JB, et al. Population structure and genetic diversity of the Fusarium graminearum species complex. Toxins. 2011;3:1020–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jolley K, Chan M-S, Maiden M. mlstdbNet—distributed multi-locus sequence typing (MLST) databases. BMC Bioinforma. 2004;5:86.

    Article  Google Scholar 

  30. Bain J, Tavanti A, Davidson AD, et al. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J Clin Microbiol. 2007;45:1469–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Odds F, Jacobsen MD. Multilocus sequence typing of pathogenic Candida species. Eukaryot Cell. 2008;7:1075–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sampaio P, Gusmão L, Correia A, et al. New microsatellite multiplex PCR for Candida albicans strain typing reveals microevolutionary changes. J Clin Microbiol. 2005;43:3869–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Viviani M, Cogliati M, Esposto MC, et al. Four-year persistence of a single Candida albicans genotype causing bloodstream infections in a surgical ward proven by multilocus sequence typing. J Clin Microbiol. 2006;44:218–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Makridakis N, Reichardt J. Multiplex automated primer extension analysis: simultaneous genotyping of several polymorphisms. Biotechniques. 2001;31:1374–80.

    CAS  PubMed  Google Scholar 

  35. Fournier A, Widmer F, Enkerli J. Development of a single-nucleotide polymorphism (SNP) assay for genotyping of Pandora neoaphidis. Fungal Biol. 2010;114:498–506.

    Article  CAS  PubMed  Google Scholar 

  36. Gillece J, Schupp JM, Balajee SA, et al. Whole genome sequence analysis of Cryptococcus gattii from the pacific northwest reveals unexpected diversity. PLoS One. 2011;6:e28550. Genetic diversity of Cryptococcus gattii was studied by whole genome sequence analysis; a group of single nucleotide polymorphims was chosen for characterization of this species.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Caramalho R, Gusmão L, Lackner M, et al. SNaPAfu: a novel single nucleotide polymorphism multiplex assay for Aspergillus fumigatus direct detection, identification and genotyping in clinical specimens. PLoS One. 2013;8:e75968. A set of 20 single nucleotide polymorphisms is proposed for the first time for detection, identification and genotyping of Aspergillus fumigatus; the markers located in coding regions are suggested for population structure studies of A. fumigatus.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tollenaere C, Susi H, Nokso-Koivisto J, et al. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PLoS One. 2012;7:e52492.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Krawczyk B, Leibner-Ciszak J, Mielech A, et al. PCR melting profile (PCR MP)-a new tool for differentiation of Candida albicans strains. BMC Infect Dis. 2009;9:177.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Costa J, Garcia-Hermoso D, Olivi M, Cabaret O, et al. Genotyping of Candida albicans using length fragment and high-resolution melting analyses together with minisequencing of a polymorphic microsatellite locus. J Microbiol Methods. 2010;80:306–9.

    Article  CAS  PubMed  Google Scholar 

  41. Wilkening S, Tekkedil MM, Lin G, et al. Genotyping 1000 yeast strains by next-generation sequencing. BMC Genomics. 2013;14:90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vanhee L, Symoens F, Jacobsen MD, et al. Comparison of multiple typing methods for Aspergillus fumigatus. Clin Microbiol Infect. 2009;15:643–50.

    Article  CAS  PubMed  Google Scholar 

  43. Araujo R, Pina-Vaz C, Rodrigues AG, et al. Simple and highly discriminatory microsatellite-based multiplex PCR for Aspergillus fumigatus strain typing. Clin Microbiol Infect. 2009;15:260–6.

    Article  CAS  PubMed  Google Scholar 

  44. Ananda G, Walsh E, Jacob KD, et al. Distinct mutational behaviors differentiate short tandem repeats from microsatellites in the human genome. Genome Biol Evol. 2013;5:606–20. An excellent study on the dynamics of microsatellite markers in eukaryotes comparing distinct repeat motifs.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Pasqualotto A, Denning DW, Anderson MJ. A cautionary tale: lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. J Clin Microbiol. 2007;45:522–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. de Valk H, Meis JF, Bretagne S, et al. Interlaboratory reproducibility of a microsatellite-based typing assay for Aspergillus fumigatus through the use of allelic ladders: proof of concept. Clin Microbiol Infect. 2009;15:180–7.

    Article  PubMed  Google Scholar 

  47. Sabino R, Sampaio P, Rosado L, et al. New polymorphic microsatellite markers able to distinguish among Candida parapsilosis sensu stricto isolates. J Clin Microbiol. 2010;48:1677–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Neal C, Richardson AO, Hurst SF, et al. Global population structure of Aspergillus terreus inferred by ISSR typing reveals geographical subclustering. BMC Microbiol. 2011;11:203.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Abbes S, Sellami H, Sellami A, et al. Candida glabrata strain relatedness by new microsatellite markers. Eur J Clin Microbiol Infect Dis. 2012;31:83–91.

    Article  CAS  PubMed  Google Scholar 

  50. Hadrich I, Makni F, Ayadi A, Ranque S. Microsatellite typing to trace Aspergillus flavus infections in a hematology unit. J Clin Microbiol. 2010;48:2396–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bahkali A, Abd-Elsalam KA, Guo JR, et al. Characterization of novel di-, tri-, and tetranucleotide microsatellite primers suitable for genotyping various plant pathogenic fungi with special emphasis on fusaria and Mycospherella graminicola. Int J Mol Sci. 2012;13:2951–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Benichou S, Dongo A, Henni DE, et al. Isolation and characterization of microsatellite markers from the phytopathogenic fungus Alternaria dauci. Mol Ecol Resour. 2009;9:390–2.

    Article  CAS  PubMed  Google Scholar 

  53. Esteban A, Leong SL, Hocking AD, et al. Utility of microsatellite markers and amplified fragment length polymorphism in the study of potentially ochratoxigenic black aspergilli. Curr Microbiol. 2008;57:348–55.

    Article  CAS  PubMed  Google Scholar 

  54. Almeida L, Araujo R. Highlights on molecular identification of closely related species. Infect Genet Evol. 2013;13:67–75.

    Article  PubMed  Google Scholar 

  55. Araujo R, Amorim A, Gusmão L. Diversity and specificity of microsatellites within Aspergillus section Fumigati. BMC Microbiol. 2012;12:154.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Robinson E, Walker TM, Pallen MJ. Genomics and outbreak investigation: from sequence to consequence. Genome Med. 2013;5:36.

    PubMed Central  PubMed  Google Scholar 

  57. Fitzpatrick D. Horizontal gene transfer in fungi. FEMS Microbiol Lett. 2012;329:1–8.

    Article  CAS  PubMed  Google Scholar 

  58. Sabat A, Budimir A, Nashev D, et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 2013;18:20380. Review on the genotyping and molecular epidemiology strategies presently available in clinical microbiology for bacteria and fungi.

    CAS  PubMed  Google Scholar 

  59. Lott T, Scarborough RT. Development of a MLST-biased SNP microarray for Candida albicans. Fungal Genet Biol. 2008;45:803–11.

    Article  CAS  PubMed  Google Scholar 

  60. Abbey D, Hickman M, Gresham D, Berman J. High-resolution SNP/CGH microarrays reveal the accumulation of loss of heterozygosity in commonly used Candida albicans strains. G3. 2011;1:523–30. Description of microarrays including 39,000 SNP alleles and 20,000 copy number variation loci across the genome of C. albicans suitable for complete genomic characterization of this yeast.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Haff L, Smirnov I. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res. 1997;7:378–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Bader O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics. 2013;13:788–99.

    Article  CAS  PubMed  Google Scholar 

  63. Ben Abdeljelil J, Saghrouni F, Emira N, et al. Molecular typing of Candida albicans isolates from patients and health care workers in a neonatal intensive care unit. J Appl Microbiol. 2011;111:1235–49.

    Article  CAS  PubMed  Google Scholar 

  64. Kidd S, Ling LM, Meyer W, et al. Molecular epidemiology of invasive aspergillosis: lessons learned from an outbreak investigation in an Australian hematology unit. Infect Control Hosp Epidemiol. 2009;30:1223–6.

    Article  PubMed  Google Scholar 

  65. Kam A, Xu J. Diversity of commensal yeasts within and among healthy hosts. Diagn Microbiol Infect Dis. 2002;43:19–28.

    Article  CAS  PubMed  Google Scholar 

  66. Odds F, Davidson AD, Jacobsen MD, et al. Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J Clin Microbiol. 2006;44:3647–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. McManus B, Coleman DC. Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect Genet Evol. 2014;21:166–78. Recent review on the epidemiology and population structure of Candida albicans; the evolution and genetic diversity of the fungus is clearly described.

    Article  PubMed  Google Scholar 

  68. Amorim A, Guedes-Vaz L, Araujo R. Susceptibility to five antifungals of Aspergillus fumigatus strains isolated from chronically colonised cystic fibrosis patients receiving azole therapy. Int J Antimicrob Agents. 2010;35:396–9.

    Article  CAS  PubMed  Google Scholar 

  69. Howard S, Cerar D, Anderson MJ, et al. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009;15:1068–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hennig S, Waterhouse TH, Bell SC, et al. A d-optimal designed population pharmacokinetic study of oral itraconazole in adult cystic fibrosis patients. Br J Clin Pharmacol. 2007;63:438–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Stevens D, Kan VL, Judson MA, et al. Practice guidelines for diseases caused by Aspergillus. Infectious Diseases Society of America. Clin Infect Dis. 2000;30:696–709.

    Article  CAS  PubMed  Google Scholar 

  72. Araujo R, Amorim A, Gusmão L. Genetic diversity of Aspergillus fumigatus in indoor hospital environments. Med Mycol. 2010;48:832–8.

    Article  CAS  PubMed  Google Scholar 

  73. Marcel J, Alfa M, Baquero F, et al. Healthcare-associated infections: think globally, act locally. Clin Microbiol Infect. 2008;14:895–907.

    Article  PubMed  Google Scholar 

  74. Peláez T, Muñoz P, Guinea J, et al. Outbreak of invasive aspergillosis after major heart surgery caused by spores in the air of the intensive care unit. Clin Infect Dis. 2012;54:e24–31.

    Article  PubMed  Google Scholar 

  75. Araujo R, Gonçalves Rodrigues A, Pina-Vaz C. Susceptibility pattern among pathogenic species of Aspergillus to physical and chemical treatments. Med Mycol. 2006;44:439–43.

    Article  PubMed  Google Scholar 

  76. Araujo R, Amorim A, Gusmão L. Microbial forensics: do Aspergillus fumigatus strains present local or regional differentiation? Forensic Sci Int: Genet. 2009;2:297–9.

    Google Scholar 

  77. Brown J, Benedict K, Park BJ, Thompson 3rd GR. Coccidioidomycosis: epidemiology. Clin Epidemiol. 2013;5:185–97.

    PubMed Central  PubMed  Google Scholar 

  78. Ramos-e-Silva M, Lima CM, Schechtman RC, et al. Systemic mycoses in immunodepressed patients (AIDS). Clin Dermatol. 2012;30:616–27.

    Article  PubMed  Google Scholar 

  79. Soares I, Araujo R. MLST@SNaP: user-friendly software for simplification of multilocus sequence typing and dissemination of microbial population analyses. Methods Ecol Evol. 2014;5:491–4. Innovative software is proposed for conversion of multilocus sequence typing results in single nucleotide polymorphisms data and vice-versa; integration of multiple genomic platforms should be prioritized for more extensive epidemiological studies.

  80. Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012;2012:713687.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

R Araujo was supported by Fundação para a Ciência e a Tecnologia (FCT) Ciência 2007 and by the European Social Fund. IPATIMUP is an associate laboratory of the Portuguese Ministry of Science, Technology and Higher Education, and is partially supported by FCT.

Compliance with Ethics Guidelines

Conflict of Interest

R Araujo declares no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by R Araujo involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Araujo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, R. Towards the Genotyping of Fungi: Methods, Benefits and Challenges. Curr Fungal Infect Rep 8, 203–210 (2014). https://doi.org/10.1007/s12281-014-0190-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-014-0190-1

Keywords

Navigation