Skip to main content

Fungal Drug Resistance Assays

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

The increase in opportunistic mycosis as well as the emergence of antifungal resistance and the development of novel antifungal drugs necessitated the development of standard phenotypic drug resistance assays for fungi. Microdilution methods for testing yeasts (CLSI M27-A3 and EUCAST E.Def 7.2 assay) and filamentous fungi (CLSI M38-A2 and EUCAST E.Def 9.2 assay) are available. Disk diffusion assays for testing Candida (CLSI M44-A2) and nondermatophytic molds (CLSI M51-A) have also been standardized. Despite their availability and increasing knowledge of epidemiological cutoff values, these assays still have limitations. Most notably, clinical MIC breakpoints are as yet undetermined for some important drug–genus combinations. In an effort to standardize methodologies that might solve these problems as well as approaches that would support assay automation, techniques based on gradient strip method, colorimetric microdilution, agar dilution, flow cytometry, sterol quantitation, and isothermal microcalorimetry are also being studied. MALDI-TOF MS and genotypic assays are other approaches currently explored for detection of antifungal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodrigues ME, Silva S, Azeredo J, Henriques M. Novel strategies to fight Candida species infection. Crit Rev Microbiol. 2014;2014:1–13.

    Article  CAS  Google Scholar 

  2. Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov. 2010;9(9):719–27.

    Article  CAS  PubMed  Google Scholar 

  3. Arikan S, Rex JH. Antifungal agents. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of clinical microbiology. 8th ed. Washington, DC: ASM Press; 2003. p. 1859–68.

    Google Scholar 

  4. Kwon DS, Mylonakis E. Posaconazole: a new broad-spectrum antifungal agent. Expert Opin Pharmacother. 2007;8(8):1167–78.

    Article  CAS  PubMed  Google Scholar 

  5. Aperis G, Mylonakis E. Newer triazole antifungal agents: pharmacology, spectrum, clinical efficacy and limitations. Expert Opin Investig Drugs. 2006;15(6):579–602.

    Article  CAS  PubMed  Google Scholar 

  6. Alastruey-Izquierdo A, Mellado E, Peláez T, Pemán J, Zapico S, Alvarez M, et al. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob Agents Chemother. 2013;57(7):3380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arendrup MC. Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect. 2014;20 Suppl 6:42–8.

    Article  CAS  PubMed  Google Scholar 

  8. Arendrup MC, Perlin DS. Echinocandin resistance: an emerging clinical problem? Curr Opin Infect Dis. 2014;27(6):484–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol. 2010;48(4):1366–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arikan-Akdagli S. Azole resistance in Aspergillus: global status in Europe and Asia. Ann N Y Acad Sci. 2012;1272:9–14.

    Article  CAS  PubMed  Google Scholar 

  11. Lockhart SR, Frade JP, Etienne KA, Pfaller MA, Diekema DJ, Balajee SA. Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother. 2011;55(9):4465–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Ingen J, van der Lee HA, Rijs TA, Zoll J, Leenstra T, Melchers WJ, et al. Azole, polyene and echinocandin MIC distributions for wild-type, TR34/L98H and TR46/Y121F/T289A Aspergillus fumigatus isolates in the Netherlands. J Antimicrob Chemother. 2015;70(1):178–81.

    Article  PubMed  CAS  Google Scholar 

  13. Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW. Cryptic species and azole resistance in the Aspergillus niger complex. Antimicrob Agents Chemother. 2011;55(10):4802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bueid A, Howard SJ, Moore CB, Richardson MD, Harrison E, Bowyer P, et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother. 2010;65(10):2116–18.

    Article  CAS  PubMed  Google Scholar 

  15. Loeffler J, Stevens DA. Antifungal drug resistance. Clin Infect Dis. 2003;36:S31–41.

    Article  CAS  PubMed  Google Scholar 

  16. Magill SS, Shields C, Sears CL, Choti M, Merz WG. Triazole cross-resistance among Candida spp.: case report, occurrence among bloodstream isolates, and implications for antifungal therapy. J Clin Microbiol. 2006;44(2):529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rogers TR. Antifungal drug resistance: limited data, dramatic impact? Int J Antimicrobial Agents. 2006;27:S7–11.

    Article  CAS  Google Scholar 

  18. Rex JH, Pfaller MA. Has antifungal susceptibility testing come of age? Clin Infect Dis. 2002;35:982–9.

    Article  CAS  PubMed  Google Scholar 

  19. Park BJ, Arthington-Skaggs BA, Hajjeh RA, Iqbal N, Ciblak MA, Lee-Yang W, et al. Evaluation of amphotericin B interpretive breakpoints for Candida bloodstream isolates by correlation with therapeutic outcome. Antimicrob Agents Chemother. 2006;50(4):1287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dannaoui E, Abdul M, Arpin M, Michel-Nguyen A, Piens MA, Favel A, et al. Results obtained with various antifungal susceptibility testing methods do not predict early clinical outcome in patients with cryptococcosis. Antimicrob Agents Chemother. 2006;50(7):2464–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard (CLSI document M27-A3). Wayne, Pa: Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  22. Alexander BD, Johnson MD, Pfeiffer CD, Jiménez-Ortigosa C, Catania J, Booker R, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013;56(12):1724–32.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lewis JSI, Wiederhold NP, Wickes BL, Patterson TF, Jorgensen JH. Rapid emergence of echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob Agents Chemother. 2013;57(9):4559–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ostrosky-Zeichner L. Candida glabrata and FKS mutations: witnessing the emergence of the true multidrug-resistant Candida. Clin Infect Dis. 2013;56(12):1733–4.

    Article  PubMed  Google Scholar 

  25. Arendrup M, Cuenca-Estrella M, Lass-Flörl C, Hope WW. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Update. 2013;16(6):81–95.

    Article  Google Scholar 

  26. Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125(1 Suppl):S3–13.

    Article  CAS  PubMed  Google Scholar 

  27. Maubon D, Garnaud C, Calandra T, Sanglard D, Cornet M. Resistance of Candida spp. to antifungal drugs in the ICU: where are we now? Intens Care Med. 2014;40(9):1241–55.

    Article  CAS  Google Scholar 

  28. Howard SJ, Arendrup MC. Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection. Med Mycol. 2011;49 Suppl 1:S90–5.

    Article  CAS  PubMed  Google Scholar 

  29. Pham CD, Reiss E, Hagen F, Meis JF, Lockhart SR. Passive surveillance for azole-resistant Aspergillus fumigatus, United States, 2011–2013. Emerg Infect Dis. 2014;20(9):1498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Linden JW, Snelders E, Kampinga GA, Rijnders BJ, Mattsson E, Debets-Ossenkopp YJ, et al. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg Infect Dis. 2011;17:1846–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. van der Linden JW, Camps SM, Kampinga GA, Arends JP, Debets-Ossenkopp YJ, Haas PJ, et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis. 2013;57(4):513–20.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao Y, Stensvold CR, Perlin DS, Arendrup MC. Azole resistance in Aspergillus fumigatus from bronchoalveolar lavage fluid samples of patients with chronic diseases. J Antimicrob Chemother. 2013;68(7):1497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buied A, Moore CB, Denning DW, Bowyer P. High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J Antimicrob Chemother. 2013;68(3):512–14.

    Article  CAS  PubMed  Google Scholar 

  34. Lionakis MS, Lewis RE, Chamilos G, Kontoyiannis DP. Aspergillus susceptibility testing in patients with cancer and invasive aspergillosis: difficulties in establishing correlation between in vitro susceptibility data and the outcome of initial amphotericin B therapy. Pharmacotherapy. 2005;25(9):1174–80.

    Article  CAS  PubMed  Google Scholar 

  35. Lass-Florl C, Kofler G, Kropshofer G, Hermans J, Kreczy A, Dierich MP, et al. In-vitro testing of susceptibility to amphotericin B is a reliable predictor of clinical outcome in invasive aspergillosis. J Antimicrob Chemother. 1998;42(4):497–502.

    Article  CAS  PubMed  Google Scholar 

  36. Hadrich I, Makni F, Neji S, Cheikhrouhou F, Bellaaj H, Elloumi M, et al. Amphotericin B in vitro resistance is associated with fatal Aspergillus flavus infection. Med Mycol. 2012;50(8):829–34.

    Article  CAS  PubMed  Google Scholar 

  37. Chakrabarti A, Shivaprakash MR, Curfs-Breuker I, Baghela A, Klaassen CH, Meis JF. Apophysomyces elegans: epidemiology, amplified fragment length polymorphism typing, and in vitro antifungal susceptibility pattern. J Clin Microbiol. 2010;48(12):4580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi (CLSI Document M38-A2). Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  39. Ghannoum MA, Arthington-Skaggs B, Chaturvedi V, Espinel-Ingroff A, Pfaller MA, Rennie R, et al. Interlaboratory study of quality control isolates for a broth microdilution method (modified CLSI M38-A) for testing susceptibilities of dermatophytes to antifungals. J Clin Microbiol. 2006;44(12):4353–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghannoum MA, Chaturvedi V, Espinel-Ingroff A, Pfaller MA, Rinaldi MG, Lee-Yang W, et al. Intra- and interlaboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J Clin Microbiol. 2004;42(7):2977–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Espinel-Ingroff A, Kish CW, Kerkering TM, Fromtling RA, Bartizal K, Galgiani JN, et al. Collaborative comparison of broth macrodilution and microdilution antifungal susceptibility tests. J Clin Microbiol. 1992;30:3138–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sewell DL, Pfaller MA, Barry AL. Comparison of broth macrodilution, broth microdilution, and Etest antifungal susceptibility tests for fluconazole. J Clin Microbiol. 1994;32:2099–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; fourth informational supplement (CLSI document M27-S4). Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

    Google Scholar 

  44. Barry AL, Pfaller MA, Rennie RP, Fuchs PC, Brown SD. Precision and accuracy of fluconazole susceptibility testing by broth microdilution, Etest, and disk diffusion methods. Antimicrob Agents Chemother. 2002;46(6):1781–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hazen KC, Baron EJ, Colombo AL, Girmenia C, Sanchez-Sousa A, del Palacio A, et al. Comparison of the susceptibilities of Candida spp. to fluconazole and voriconazole in a 4-year global evaluation using disk diffusion. J Clin Microbiol. 2003;41(12):5623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirkpatrick WR, Turner TM, Fothergill AW, McCarthy DI, Redding SW, Rinaldi MG, et al. Fluconazole disk diffusion susceptibility testing of Candida species. J Clin Microbiol. 1998;36(11):3429–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Meis J, Petrou M, Bille J, Ellis D, Gibbs D. A global evaluation of the susceptibility of Candida species to fluconazole by disk diffusion. Diagn Microbiol Infect Dis. 2000;36(4):215–23.

    Article  CAS  PubMed  Google Scholar 

  48. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, Gould IM, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol. 2007;45(6):1735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clinical and Laboratory Standards Institute. Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline. Second edition (CLSI document M44-A2). Wayne, PA: Clinical and Laboratory Standards Institute; 2009.

    Google Scholar 

  50. Lee S-C, Fung C-P, Lee N, See L-C, Huang J-S, Tsai C-J, et al. Fluconazole disk diffusion test with methylene blue- and glucose-enriched Mueller Hinton agar for determining susceptibility of Candida species. J Clin Microbiol. 2001;39:1615–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D. Testing. CSfAS. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat. 2010;13(6):180–95.

    Article  CAS  PubMed  Google Scholar 

  52. Arendrup MC, Park S, Brown S, Pfaller M, Perlin DS. Evaluation of CLSI M44-A2 disk diffusion and associated breakpoint testing of caspofungin and micafungin using a well-characterized panel of wild-type and FKS hot spot mutant Candida isolates. Antimicrob Agents Chemother. 2011;55:1891–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pfaller MA, Andes D, Arendrup MC, Diekema DJ, Espinel-Ingroff A, Alexander BD, et al. Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagn Microbiol Infect Dis. 2011;70(3):330–43.

    Article  CAS  PubMed  Google Scholar 

  54. Clinical and Laboratory Standards Institute. Zone diameter interpretive standards, corresponding minimal inhibitory concentration (MIC) interpretive breakpoints, and quality control limits for antifungal disk diffusion susceptibility testing of yeasts; informational supplement (CLSI document M44-S3). Wayne, PA: Clinical and Laboratory Standards Institute; 2009.

    Google Scholar 

  55. Brown S, Traczewski M. Quality control limits for posaconazole disk susceptibility tests on Mueller-Hinton agar with glucose and methylene blue. J Clin Microbiol. 2007;45(1):222–3.

    Article  CAS  PubMed  Google Scholar 

  56. Diekema DJ, Messer SA, Hollis RJ, Boyken LB, Tendolkar S, Kroeger J, et al. Evaluation of etest and disk diffusion methods compared with broth microdilution antifungal susceptibility testing of clinical isolates of Candida spp. against posaconazole. J Clin Microbiol. 2007;45(6):1974–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sims CR, Paetznick VL, Rodriguez JR, Chen E, Ostrosky-Zeichner L. Correlation between microdilution, E-test, and disk diffusion methods for antifungal susceptibility testing of posaconazole against Candida spp. J Clin Microbiol. 2006;44(6):2105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Girmenia C, Pizzarelli G, D’Antonio D, Cristini F, Martino P. In vitro susceptibility testing of Geotrichum capitatum: comparison of the E-test, disk diffusion, and sensititre colorimetric methods in the NCCLS M27-A2 broth microdilution reference method. Antimicrob Agents Chemother. 2003;47(12):3985–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Bijie H, Dzierzanowska D, et al. Results from the ARTEMIS DISK global antifungal surveillance study, 1997 to 2007: 10.5-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol. 2009;47(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  60. Arikan S, Paetznick V, Rex JH. Comparative evaluation of disk diffusion with microdilution assay in susceptibility testing of caspofungin against Aspergillus and Fusarium isolates. Antimicrob Agents Chemother. 2002;46(9):3084–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arikan S, Yurdakul P, Hascelik G. Comparison of two methods and three end points in determination of in vitro activity of micafungin against Aspergillus spp. Antimicrob Agents Chemother. 2003;47(8):2640–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Messer SA, Diekema DJ, Hollis RJ, Boyken LB, Tendolkar S, Kroeger J, et al. Evaluation of disk diffusion and Etest compared to broth microdilution for antifungal susceptibility testing of posaconazole against clinical isolates of filamentous fungi. J Clin Microbiol. 2007;45(4):1322–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lopez-Oviedo E, Aller AI, Martin C, Castro C, Ramirez M, Peman JM, et al. Evaluation of disk diffusion method for determining posaconazole susceptibility of filamentous fungi: comparison with CLSI broth microdilution method. Antimicrob Agents Chemother. 2006;50(3):1108–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Espinel-Ingroff A, Arthington-Skaggs B, Iqbal N, Ellis D, Pfaller MA, Messer S, et al. Multicenter evaluation of a new disk agar diffusion method for susceptibility testing of filamentous fungi with voriconazole, posaconazole, itraconazole, amphotericin B, and caspofungin. J Clin Microbiol. 2007;45(6):1811–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clinical and Laboratory Standards Institute. Method for antifungal disk diffusion susceptibility testing of nondermatophyte filamentous fungi; approved guideline (CLSI document M51-A). Wayne, PA: Clinical and Laboratory Standards Institute; 2010.

    Google Scholar 

  66. Clinical and Laboratory Standards Institute. Performance standards for antifungal disk diffusion susceptibility testing of nondermatophyte filamentous fungi; informational supplement CLSI M51-S1. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.

    Google Scholar 

  67. Fernandez-Torres B, Carrillo-Munoz A, Inza I, Guarro J. Effect of culture medium on the disk diffusion method for determining antifungal susceptibilities of dermatophytes. Antimicrob Agents Chemother. 2006;50(6):2222–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mendez CC, Serrano MC, Valverde A, Peman J, Almeida C, Martin-Mazuelos E. Comparison of E-Test (R), disk diffusion and a modified CLSI broth microdilution (M38-A) method for in vitro testing of itraconazole, fluconazole and voriconazole against dermatophytes. Med Mycol. 2008;46(2):119–23.

    Article  CAS  PubMed  Google Scholar 

  69. Venugopal PV, Venugopal TV. Disk diffusion susceptibility testing of dermatophytes with allylamines. Int J Dermatol. 1994;33(10):730–2.

    Article  CAS  PubMed  Google Scholar 

  70. Nweze EI, Mukherjee PK, Ghannoum MA. Agar-based disk diffusion assay for susceptibility testing of dermatophytes. J Clin Microbiol. 2010;48(10):3750–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh J, Zaman M, Gupta AK. Evaluation of microdilution and disk diffusion methods for antifungal susceptibility testing of dermatophytes. Med Mycol. 2007;45(7):595–602.

    Article  CAS  PubMed  Google Scholar 

  72. Rementeria A, Sanchez-Vargas LO, Villar M, Casals JB, Carrillo-Munoz AJ, Andres CR, et al. Comparison of tablet and disk diffusion methods for fluconazole and voriconazole in vitro activity testing against clinical yeast isolates. J Chemother. 2007;19(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  73. Espinel-Ingroff A, Canton E, Gibbs D, Wang A. Correlation of Neo-Sensitabs tablet diffusion assay results on three different agar media with CLSI broth microdilution M27-A2 and disk diffusion M44-A results for testing susceptibilities of Candida spp. and Cryptococcus neoformans to amphotericin B, caspofungin, fluconazole, itraconazole, and voriconazole. J Clin Microbiol. 2007;45(3):858–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ochiuzzi ME, Santiso GM, Arechavala AI. Correlation of Etest and Neo-Sensitabs diffusion assays on Mueller-Hinton-methylene blue agar with broth microdilution reference method (CLSI-M27-A2) for testing susceptibilities of Cryptococcus neoformans to amphotericin B and fluconazole. Med Mycol. 2010;48(6):893–6.

    Article  CAS  PubMed  Google Scholar 

  75. Espinel-Ingroff A, Canton E. Comparison of Neo-Sensitabs tablet diffusion assay with CLSI broth microdilution M38-A and disk diffusion methods for testing susceptibility of filamentous fungi with amphotericin B, caspofungin, itraconazole, posaconazole, and voriconazole. J Clin Microbiol. 2008;46(5):1793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lozano-Chiu M, Nelson PW, Paetznick VL, Rex JH. Disk diffusion method for determining susceptibilities of Candida spp. to MK-0991. J Clin Microbiol. 1999;37(5):1625–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Matar MJ, Ostrosky-Zeichner L, Paetznick VL, Rodriguez JR, Chen E, Rex JH. Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob Agents Chemother. 2003;47(5):1647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Morace G, Amato G, Bistoni F, Fadda G, Marone P, Montagna MT, et al. Multicenter comparative evaluation of six commercial systems and the National Committee for Clinical Laboratory Standards M27-A broth microdilution method for fluconazole susceptibility testing of Candida species. J Clin Microbiol. 2002;40(8):2953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sandven P. Detection of fluconazole-resistant Candida strains by a disc diffusion screening test. J Clin Microbiol. 1999;37(12):3856–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W, (EUCAST) SoASTAotEECfAST. EUCAST DEFINITIVE DOCUMENT EDef 7.2 Revision. Method for the determination of broth dilution minimum Inhibitory concentrations of antifungal agents for yeasts 2012.

    Google Scholar 

  81. Cuenca-Estrella M, Moore CB, Barchiesi F, Bille J, Chryssanthou E, Denning DW, et al. Multicenter evaluation of the reproducibility of the proposed antifungal susceptibility testing method for fermentative yeasts of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antimicrobial Susceptibility Testing (AFST-EUCAST). Clin Microbiol Infect. 2003;9(6):467–74.

    Article  CAS  PubMed  Google Scholar 

  82. Cuenca-Estrella M, Lee-Yang W, Ciblak MA, Arthington-Skaggs BA, Mellado E, Warnock DW, et al. Comparative evaluation of NCCLS M27-A and EUCAST broth microdilution procedures for antifungal susceptibility testing of Candida species. Antimicrob Agents Chemother. 2002;46(11):3644–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodriguez-Tudela JL, Donnelly JP, Pfaller MA, Chryssantou E, Warn P, Denning DW, et al. Statistical analyses of correlation between fluconazole MICs for Candida spp. assessed by standard methods set forth by the European Committee on Antimicrobial Susceptibility Testing (E.Dis. 7.1) and CLSI (M27-A2). J Clin Microbiol. 2007;45(1):109–11.

    Article  CAS  PubMed  Google Scholar 

  84. Pfaller MA, Espinel-Ingroff A, Boyken L, Hollis RJ, Kroeger J, Messer SA, et al. Comparison of the broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing with the 24-hour CLSI BMD method for testing susceptibility of Candida species to fluconazole, posaconazole, and voriconazole by use of epidemiological cutoff values. J Clin Microbiol. 2011;49(3):845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pfaller MA, Castanheira M, Diekema DJ, Messer SA, Moet GJ, Jones RN. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. J Clin Microbiol. 2010;48(5):1592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfaller MA, Castanheira M, Messer SA, Rhomberg PR, Jones RN. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 systemically active antifungal agents when tested against Candida spp. Diagn Microbiol Infect Dis. 2014;79(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  87. Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E, et al. Interlaboratory variability of Caspofungin MICs for Candida spp. Using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrob Agents Chemother. 2013;57(12):5836–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. EUCAST Subcommittee on Antifungal Susceptibility Testing—AFST. EUCAST Breakpoint Table for Candida spp. and Aspergillus spp. 2015. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Antifungal_breakpoints_v_7.0.pdf. Accessed 10 Mar 2015.

  89. Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W, Howard SJ, (EUCAST) SoASTAotEECfAST. EUCAST DEFINITIVE DOCUMENT EDef 9.2 Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds 2014.

    Google Scholar 

  90. Chryssanthou E, Cuenca-Estrella M. Comparison of the EUCAST-AFST broth dilution method with the CLSI reference broth dilution method (M38-A) for susceptibility testing of posaconazole and voriconazole against Aspergillus spp. Clin Microbiol Infect. 2006;12(9):901–4.

    Article  CAS  PubMed  Google Scholar 

  91. Pfaller M, Boyken L, Hollis R, Kroeger J, Messer S, Tendolkar S, et al. Comparison of the broth microdilution methods of the European Committee on Antimicrobial Susceptibility Testing and the Clinical and Laboratory Standards Institute for testing itraconazole, posaconazole, and voriconazole against Aspergillus isolates. J Clin Microbiol. 2011;49(3):1110–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pfaller MA, Diekema DJ. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol. 2012;50(9):2846–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance. J Clin Microbiol. 2013;51(8):2571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rodriguez-Tudela JL, Hope W, Cuenca-Estrella M, Donnelly JP, Lass-Flörl C, Arendrup MC. Can we achieve clinical breakpoints for the triazoles in Aspergillus. Curr Fungal Infect Rep. 2011;5:128–34.

    Article  Google Scholar 

  95. Espinel-Ingroff A, Cuenca-Estrella M, Fothergill A, Fuller J, Ghannoum M, Johnson E, et al. Wild-type MIC distributions and epidemiological cutoff values for amphotericin B and Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). Antimicrob Agents Chemother. 2011;55(11):5150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Espinel-Ingroff A, Fothergill A, Fuller J, Johnson E, Pelaez T, Turnidge J. Wild-type MIC distributions and epidemiological cutoff values for caspofungin and Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). Antimicrob Agents Chemother. 2011;55(6):2855–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Espinel-Ingroff A, Diekema DJ, Fothergill A, Johnson E, Pelaez T, Pfaller MA, et al. Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). J Clin Microbiol. 2010;48(9):3251–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Espinel-Ingroff A, Chowdhary A, Gonzalez GM, Lass-Flörl C, Martin-Mazuelos E, Meis J, et al. Multicenter study of isavuconazole MIC distributions and epidemiological cutoff values for Aspergillus spp. for the CLSI M38-A2 broth microdilution method. Antimicrob Agents Chemother. 2013;57(8):3823–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. EUCAST Subcommittee on Antifungal Susceptibility Testing A. EUCAST Rationale documents on Antifungal Agents. 2015. (www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents) Accessed 10 Mar 2015.

  100. Rex JH, Cooper Jr CR, Merz WG, Galgiani JN, Anaissie EJ. Detection of amphotericin B-resistant Candida isolates in a broth-based system. Antimicrob Agents Chemother. 1995;39:906–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wanger A, Mills K, Nelson PW, Rex JH. Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for antifungal susceptibility testing: enhanced ability to detect amphotericin B-resistant Candida isolates. Antimicrob Agents Chemother. 1995;39:2520–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nguyen MH, Clancy CJ, Yu VL, Yu YV, Morris AJ, Snydman DR, et al. Do in vitro susceptibility data predict the microbiologic response to amphotericin B? Results of a prospective study of patients with Candida fungemia. J Infect Dis. 1998;177:425–30.

    Article  CAS  PubMed  Google Scholar 

  103. Lozano-Chiu M, Nelson PW, Lancaster M, Pfaller MA, Rex JH. Lot-to-lot variability of antibiotic medium 3 when used for susceptibility testing of Candida isolates to amphotericin B. J Clin Microbiol. 1997;35:270–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002;50(4):243–60.

    Article  CAS  PubMed  Google Scholar 

  105. Riddell J, Kauffman CA. The evolution of resistant Candida species in cancer centers—Implications for treatment and prophylaxis. Cancer. 2008;112(11):2334–7.

    Article  PubMed  Google Scholar 

  106. Pfaller MA, Castanheira M, Messer SA, Jones RN. In vitro antifungal susceptibilities of isolates of Candida spp. and Aspergillus spp. from China to nine systemically active antifungal agents: data from the SENTRY antifungal surveillance program, 2010 through 2012. Mycoses. 2015;58(4):209–14. doi:10.1111/myc.12299.

    Article  CAS  PubMed  Google Scholar 

  107. Pfaller MA, Messer SA, Hollis RJ, Espinel-Ingroff A, Ghannoum MA, Plavan H, et al. Multisite reproducibility of MIC results by the Sensititre (R) YeastOne colorimetric antifungal susceptibility panel. Diagn Microbiol Infect Dis. 1998;31(4):543–7.

    Article  CAS  PubMed  Google Scholar 

  108. Bernal S, Aller AI, Chavez M, Valverde A, Serrano C, Gutierrez MJ, et al. Comparison of the Sensititre YeastOne colorimetric microdilution panel and the NCCLS broth microdilution method for antifungal susceptibility testing against Candida species. Chemotherapy. 2002;48(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  109. Chryssanthou E. Trends in antifungal susceptibility among Swedish Candida species bloodstream isolates from 1994 to 1998: comparison of the E-test and the sensititre YeastOne colorimetric antifungal panel with the NCCLS M27-A reference method. J Clin Microbiol. 2001;39(11):4181–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Espinel-Ingroff A, Pfaller M, Messer SA, Knapp CC, Killian S, Norris HA, et al. Multicenter comparison of the Sensititre YeastOne Colorimetric Antifungal Panel with the National Committee for Clinical Laboratory Standards M27-A reference method for testing clinical isolates of common and emerging Candida spp., Cryptococcus spp., and other yeasts and yeast-like organisms. J Clin Microbiol. 1999;37(3):591–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Martin-Mazuelos E, Peman J, Valverde A, Chaves M, Serrano MC, Canton E. Comparison of the Sensititre YeastOne colorimetric antifungal panel and Etest with the NCCLS M38-A method to determine the activity of amphotericin B and itraconazole against clinical isolates of Aspergillus spp. J Antimicrob Chemother. 2003;52(3):365–70.

    Article  CAS  PubMed  Google Scholar 

  112. Pujol I, Capilla J, Fernandez-Torres B, Ortoneda M, Guarro J. Use of the sensititre colorimetric microdilution panel for antifungal susceptibility testing of dermatophytes. J Clin Microbiol. 2002;40(7):2618–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Alexander BD, Byrne TC, Smith KL, Hanson KE, Anstrom KJ, Perfect JR, et al. Comparative evaluation of etest and sensititre YeastOne panels against the clinical and laboratory standards institute M27-A2 reference broth microdilution method for testing Candida susceptibility to seven antifungal agents. J Clin Microbiol. 2007;45(3):698–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Patel R, Mendrick C, Knapp CC, Grist R, McNicholas PM. Clinical evaluation of the sensititre YeastOne plate for testing susceptibility of filamentous fungi to posaconazole. J Clin Microbiol. 2007;45(6):2000–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Canton E, Peman J, Gobernado M, Alvarez E, Baquero F, Cisterna R, et al. Sensititre YeastOne caspofungin susceptibility testing of Candida clinical isolates: correlation with results of NCCLS M27–A2 multicenter study. Antimicrob Agents Chemother. 2005;49(4):1604–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Espinel-Ingroff A, Pfaller M, Messer SA, Knapp CC, Holliday N, Killian SB. Multicenter comparison of the sensititre YeastOne Colorimetric Antifungal Panel with the NCCLS M27-A2 reference method for testing new antifungal agents against clinical isolates of Candida spp. J Clin Microbiol. 2004;42(2):718–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pfaller MA, Espinel-Ingroff A, Jones RN. Clinical evaluation of the sensititre YeastOne colorimetric antifungal plate for antifungal susceptibility testing of the new triazoles voriconazole, posaconazole, and ravuconazole. J Clin Microbiol. 2004;42(10):4577–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cuenca-Estrella M, Gomez-Lopez A, Alastruey-Izquierdo A, Bernal-Martinez L, Cuesta I, Buitrago MJ, et al. Comparison of the Vitek 2 antifungal susceptibility system with the clinical and laboratory standards institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest techniques for in vitro detection of antifungal resistance in yeast isolates. J Clin Microbiol. 2010;48(5):1782–6.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Orasch C, Marchetti O, Garbino J, Schrenzel J, Zimmerli S, Mühlethaler K, et al. Candida species distribution and antifungal susceptibility testing according to European Committee on Antimicrobial Susceptibility Testing and new vs. old Clinical and Laboratory Standards Institute clinical breakpoints: a 6-year prospective candidaemia survey from the fungal infection network of Switzerland. Clin Microbiol Infect. 2014;20(7):698–705.

    Article  CAS  PubMed  Google Scholar 

  120. Pfaller MA, Arikan S, Lozano-Chiu M, Chen YS, Coffman S, Messer SA, et al. Clinical evaluation of the ASTY colorimetric microdilution panel for antifungal susceptibility testing. J Clin Microbiol. 1998;36(9):2609–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kalkanci A, Mekha N, Poonwan N, Makimura K, Sugita T. Comparative evaluation of Trichosporon asahii susceptibility using ASTY colorimetric microdilution and CLSI M27-A2 broth microdilution reference methods. Microbiol Immunol. 2008;52(9):435–9.

    Article  CAS  PubMed  Google Scholar 

  122. Pfaller MA, Chaturvedi V, Diekema DJ, Ghannoum MA, Holliday NM, Killian SB, et al. Comparison of the Sensititre YeastOne colorimetric antifungal panel with CLSI microdilution for antifungal susceptibility testing of the echinocandins against Candida spp., using new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol Infect Dis. 2012;73(4):365–8.

    Article  CAS  PubMed  Google Scholar 

  123. Cantón E, Pemán J, Hervás D, Iñiguez C, Navarro D, Echeverría J, et al. Comparison of three statistical methods for establishing tentative wild-type population and epidemiological cutoff values for echinocandins, amphotericin B, flucytosine, and six Candida species as determined by the colorimetric Sensititre YeastOne method. J Clin Microbiol. 2012;50(12):3921–6.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yamaguchi H, Uchida K, Nagino K, Matsunaga T. Usefulness of a colorimetric method for testing antifungal drug susceptibilities of Aspergillus species to voriconazole. J Infect Chemother. 2002;8(4):374–7.

    Article  CAS  PubMed  Google Scholar 

  125. Meletiadis J, Mouton JW, Meis J, Bouman BA, Verweij PE. Comparison of the Etest and the sensititre colorimetric methods with the NCCLS proposed standard for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol. 2002;40(8):2876–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Guinea J, Pelaez T, Alcala L, Bouza E. Comparison of Sensititre YeastOne (R) with the NCCLS M38-A microdilution method to determine the activity of amphotericin B, voriconazole, and itraconazole against clinical isolates of Aspergillus fumigatus. Diagn Microbiol Infect Dis. 2006;56(1):53–5.

    Article  CAS  PubMed  Google Scholar 

  127. Linares MJ, Charriel G, Solis F, Rodriguez F, Ibarra A, Casal M. Susceptibility of filamentous fungi to voriconazole tested by two microdilution methods. J Clin Microbiol. 2005;43(1):250–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Carrillo-Munoz AJ, Quindos G, Ruesga M, del Valle O, Peman J, Canton E, et al. In vitro antifungal susceptibility testing of filamentous fungi with Sensititre Yeast One (TM). Mycoses. 2006;49(4):293–7.

    Article  CAS  PubMed  Google Scholar 

  129. Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Multicenter comparison of the VITEK 2 yeast susceptibility test with the CLSI broth microdilution reference method for testing fluconazole against Candida spp. J Clin Microbiol. 2007;45(3):796–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Peterson JF, Pfaller MA, Diekema DJ, Rinaldi MG, Riebe KM, Ledeboer NA. Multicenter comparison of the Vitek 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing caspofungin, micafungin, and posaconazole against Candida spp. J Clin Microbiol. 2011;49(5):1765–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Comparison of the Vitek 2 yeast susceptibility system with CLSI microdilution for antifungal susceptibility testing of fluconazole and voriconazole against Candida spp., using new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol Infect Dis. 2013;77(1):37–40.

    Article  CAS  PubMed  Google Scholar 

  132. Pfaller MA, Diekema DJ, Procop GW, Wiederhold NP. Multicenter evaluation of the new Vitek 2 yeast susceptibility test using new CLSI clinical breakpoints for fluconazole. J Clin Microbiol. 2014;52(6):2126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lozano-Chiu M, Paetznick VL, Ghannoum MA, Rex JH. Detection of resistance to amphotericin B among Cryptococcus neoformans clinical isolates: performance of three different media assessed by using E-Test and National Committee for Clinical Laboratory Standards M27-A methodologies. J Clin Microbiol. 1998;36:2817–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Pfaller MA, Messer SA, Karlsson A, Bolmstrom A. Evaluation of the Etest method for determining fluconazole susceptibilities of 402 clinical yeast isolates by using three different agar media. J Clin Microbiol. 1998;36(9):2586–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Favel A, Chastin C, Thomet AL, Regli P, Michel-Nguyen A, Penaud A. Evaluation of the E test for antifungal susceptibility testing of Candida glabrata. Eur J Clin Microbiol Infect Dis. 2000;19(2):146–8.

    Article  CAS  PubMed  Google Scholar 

  136. Pfaller MA, Messer SA, Mills K, Bolmstrom A. In vitro susceptibility testing of filamentous fungi: comparison of Etest and reference microdilution methods for determining itraconazole MICs. J Clin Microbiol. 2000;38(9):3359–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Petrou MA, Shanson DC. Susceptibility of Cryptococcus neoformans by the NCCLS microdilution and Etest methods using five defined media. J Antimicrob Chemother. 2000;46(5):815–18.

    Article  CAS  PubMed  Google Scholar 

  138. Pfaller MA, Boyken L, Messer SA, Tendolkar S, Hollis RJ, Diekema DJ. Evaluation of the Etest method using Mueller-Hinton agar with glucose and methylene blue for determining amphotericin B MICs for 4,936 clinical isolates of Candida species. J Clin Microbiol. 2004;42(11):4977–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pfaller MA, Diekema DJ, Boyken L, Messer SA, Tendolkar S, Hollis RJ. Evaluation of the Etest and disk diffusion methods for determining susceptibilities of 235 bloodstream isolates of Candida glabrata to fluconazole and voriconazole. J Clin Microbiol. 2003;41(5):1875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shin JH, Kim MN, Jang SJ, Ju MY, Kim SH, Shin MG, et al. Detection of amphotericin B resistance in Candida haemulonii and closely related species by use of the Etest, Vitek-2 yeast susceptibility system, and CLSI and EUCAST broth microdilution methods. J Clin Microbiol. 2012;50(6):1852–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Alvarado-Ramírez E, Torres-Rodríguez JM, Murciano F, Sellart M. Müeller-Hinton methylene blue media as an alternative to RPMI 1640 for determining the susceptibility of Cryptococcus neoformans and Cryptococcus gattii to posaconazole with Etest. Mycoses. 2010;53(2):114–16.

    Article  PubMed  CAS  Google Scholar 

  142. Ranque S, Lachaud L, Gari-Toussaint M, Michel-Nguyen A, Mallié M, Gaudart J, et al. Interlaboratory reproducibility of Etest amphotericin B and caspofungin yeast susceptibility testing and comparison with the CLSI method. J Clin Microbiol. 2012;50(7):2305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Colombo AL, Barchiesi F, McGough DA, Rinaldi MG. Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for azole antifungal susceptibility testing. J Clin Microbiol. 1995;33:535–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Maxwell MJ, Messer SA, Hollis RJ, Boyken L, Tendolkar S, Diekema DJ, et al. Evaluation of Etest method for determining fluconazole and voriconazole MICs for 279 clinical isolates of Candida species infrequently isolated from blood. J Clin Microbiol. 2003;41(3):1087–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pfaller MA, Messer SA, Houston A, Mills K, Bolmstrom A, Jones RN. Evaluation of the Etest method for determining voriconazole susceptibilities of 312 clinical isolates of Candida species by using three different agar media. J Clin Microbiol. 2000;38(10):3715–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pfaller MA, Messer SA, Mills K, Bolmstrom A, Jones RN. Evaluation of Etest method for determining posaconazole MICs for 314 clinical isolates of Candida species. J Clin Microbiol. 2001;39(11):3952–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pfaller MA, Messer SA, Mills K, Bolmstrom A, Jones RN. Evaluation of Etest method for determining caspofungin (MK-0991) susceptibilities of 726 clinical isolates of Candida species. J Clin Microbiol. 2001;39(12):4387–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Maxwell AJ, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. Evaluation of etest method for determining voriconazole and amphotericin B MICs for 162 clinical isolates of Cryptococcus neoformans. J Clin Microbiol. 2003;41(1):97–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Aller AI, Martin-Mazuelos E, Gutierrez MJ, Bernal S, Chavez N, Recio FJ. Comparison of the Etest and microdilution method for antifungal susceptibility testing of Cryptococcus neoformans to four antifungal agents. J Antimicrob Chemother. 2000;46(6):997–1000.

    Article  CAS  PubMed  Google Scholar 

  150. Peyron F, Favel A, Michel-Nguyen A, Gilly M, Regli P, Bolmstrom A. Improved detection of amphotericin B-resistant isolates of Candida lusitaniae by Etest. J Clin Microbiol. 2001;39(1):339–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Guinea J, Pelaez T, Alcala L, Bouza E. Correlation between the E test and the CLSI M-38 A microdilution method to determine the activity of amphotericin B, voriconazole, and itraconazole against clinical isolates of Aspergillus fumigatus. Diagn Microbiol Infect Dis. 2007;57(3):273–6.

    Article  CAS  PubMed  Google Scholar 

  152. Pfaller JB, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. In vitro susceptibility testing of Aspergillus spp.: comparison of Etest and reference microdilution methods for determining voriconazole and itraconazole MICs. J Clin Microbiol. 2003;41(3):1126–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Espinel-Ingroff A, Rezusta A. E-test method for testing susceptibilities of Aspergillus spp. to the new triazoles voriconazole and posaconazole and to established antifungal agents: Comparison with NCCLS broth microdilution method. J Clin Microbiol. 2002;40(6):2101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Espinel-Ingroff A. Evaluation of broth microdilution testing parameters and agar diffusion Etest procedure for testing susceptibilities of Aspergillus spp. to caspofungin acetate (MK-0991). J Clin Microbiol. 2003;41(1):403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Espinel-Ingroff A. Comparison of three commercial assays and a modified disk diffusion assay with two broth microdilution reference assays for testing Zygomycetes, Aspergillus spp., Candida spp., and Cryptococcus neoformans with posaconazole and Amphotericin B. J Clin Microbiol. 2006;44(10):3616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pinto E, Lago M, Branco L, Vale-Silva LA, Pinheiro MD. Evaluation of Etest performed in Mueller-Hinton agar supplemented with glucose for antifungal susceptibility testing of clinical isolates of filamentous fungi. Mycopathologia. 2014;177(3–4):157–66.

    Article  CAS  PubMed  Google Scholar 

  157. Arikan S, Hascelik G. Comparison of NCCLS microdilution method and Etest in antifungal susceptibility testing of clinical Trichosporon asahii isolates. Diagn Microbiol Infect Dis. 2002;43(2):107–11.

    Article  CAS  PubMed  Google Scholar 

  158. Chang HC, Chang JJ, Chan SH, Huang AH, Wu TL, Lin MC, et al. Evaluation of Etest for direct antifungal susceptibility testing of yeasts in positive blood cultures. J Clin Microbiol. 2001;39(4):1328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vandenbossche I, Vaneechoutte M, Vandevenne M, De Baere T, Verschraegen G. Susceptibility testing of fluconazole by the NCCLS broth macrodilution method, E-test, and disk diffusion for application in the routine laboratory. J Clin Microbiol. 2002;40(3):918–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Serrano MC, Morilla D, Valverde A, Chavez M, Espinel-Ingroff A, Claro R, et al. Comparison of Etest with modified broth microdilution method for testing susceptibility of Aspergillus spp. to voriconazole. J Clin Microbiol. 2003;41(11):5270–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vale-Silva LA, Buchta V. Antifungal susceptibility testing by flow cytometry: is it the future? Mycoses. 2006;49(4):261–73.

    Article  CAS  PubMed  Google Scholar 

  162. Joung YH, Kim HR, Lee MK, Park AJ. Fluconazole susceptibility testing of Candida species by flow cytometry. J Infect. 2007;54(5):504–8.

    Article  PubMed  Google Scholar 

  163. Favel A, Peyron F, De Meo M, Michel-Nguyen A, Carriere J, Chastin C, et al. Amphotericin B susceptibility testing of Candida lusitaniae isolates by flow cytofluorometry: comparison with the Etest and the NCCLS broth macrodilution method. J Antimicrob Chemother. 1999;43(2):227–32.

    Article  CAS  PubMed  Google Scholar 

  164. Ramani R, Chaturvedi V. Flow cytometry antifungal susceptibility testing of pathogenic yeasts other than Candida albicans and comparison with the NCCLS broth microdilution test. Antimicrob Agents Chemother. 2000;44(10):2752–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ramani R, Gangwar M, Chaturvedi V. Flow cytometry antifungal susceptibility testing of Aspergillus fumigatus and comparison of mode of action of voriconazole vis-a-vis amphotericin B and itraconazole. Antimicrob Agents Chemother. 2003;47(11):3627–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rudensky B, Broidie E, Yinnon AM, Weitzman T, Paz E, Keller N, et al. Rapid flow-cytometric susceptibility testing of Candida species. J Antimicrob Chemother. 2005;55(1):106–9.

    Article  CAS  PubMed  Google Scholar 

  167. Mitchell M, Hudspeth M, Wright A. Flow cytometry susceptibility testing for the antifungal caspofungin. J Clin Microbiol. 2005;43(6):2586–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wenisch C, Moore CB, Krause R, Presterl E, Pichna P, Denning DW. Antifungal susceptibility testing of fluconazole by flow cytometry correlates with clinical outcome. J Clin Microbiol. 2001;39(7):2458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Morales BP, Junior IN, Trilles L, Bertho AL, Oliveira Rde V, Nishikawa MM, et al. Determination of the minimum inhibitory concentration of Cryptococcus neoformans and Cryptococcus gattii against fluconazole by flow cytometry. Med Mycol. 2014;52(1):90–8.

    CAS  PubMed  Google Scholar 

  170. Vale-Silva LA, Pinto P, Lopes V, Ramos H, Pinto E. Comparison of the Etest and a rapid flow cytometry-based method with the reference CLSI broth microdilution protocol M27-A3 for the echinocandin susceptibility testing of Candida spp. Eur J Clin Microbiol Infect Dis. 2012;31(6):941.

    Article  CAS  PubMed  Google Scholar 

  171. Chaturvedi V, Ramani R, Rex JH. Collaborative study of antibiotic medium 3 and flow cytometry for identification of amphotericin B-resistant Candida isolates. J Clin Microbiol. 2004;42(5):2252–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Posteraro B, Torelli R, De Carolis E, Posteraro P, Sanguinetti M. Antifungal susceptibility testing: current role from the clinical laboratory perspective. Mediterr J Hematol Infect Dis. 2014;6(1), e2014030.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Arthington-Skaggs BA, Lee-Yang W, Ciblak MA, Frade JP, Brandt ME, Hajjeh RA, et al. Comparison of visual and spectrophotometric methods of broth microdilution MIC end point determination and evaluation of a sterol quantitation method for in vitro susceptibility testing of fluconazole and itraconazole against trailing and nontrailing Candida isolates. Antimicrob Agents Chemother. 2002;46(8):2477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Meletiadis J, Mouton JW, Meis J, Bouman BA, Donnelly JP, Verweij PE, et al. Colorimetric assay for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol. 2001;39(9):3402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Meletiadis J, Mouton JW, Meis JFG, Bouman BA, Donnelly PJ, Verweij PE, et al. Comparison of spectrophotometric and visual readings of NCCLS method and evaluation of a colorimetric method based on reduction of a soluble tetrazolium salt, 2,3-bis{2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium-hydroxide}, for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol. 2001;39(12):4256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Antachopoulos C, Meletiadis J, Roilides E, Sein T, Walsh TJ. Rapid susceptibility testing of medically important zygomycetes by XTT assay. J Clin Microbiol. 2006;44(2):553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Simitsopoulou M, Peshkova P, Tasina E, Katragkou AK, Velegraki A, Walsh TJ, et al. Species-specific and drug-specific differences in susceptibility of Candida biofilms to echinocandins: characterization of less common bloodstream isolates. Antimicrob Agents Chemother. 2013;57(6):2562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Dhale RP, Ghorpade MV, Dharmadhikari CA. Comparison of various methods used to detect biofilm production of Candida species. J Clin Diagn Res. 2014;8(11):DC18-c20.

    PubMed  Google Scholar 

  179. Tortorano AM, Viviani MA, Barchiesi F, Arzeni D, Rigoni AL, Cogliati M, et al. Comparison of three methods for testing azole susceptibilities of Candida albicans strains isolated sequentially from oral cavities of AIDS patients. J Clin Microbiol. 1998;36(6):1578–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Barchiesi F, Tortorano AM, Di Francesco LF, Cogliati M, Scalise G, Viviani MA. In-vitro activity of five antifungal agents against uncommon clinical isolates of Candida spp. J Antimicrob Chemother. 1999;43(2):295–9.

    Article  CAS  PubMed  Google Scholar 

  181. Arendrup MC, Garcia-Effron G, Lass-Flörl C, Lopez AG, Rodriguez-Tudela JL, Cuenca-Estrella M, et al. Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrob Agents Chemother. 2010;54(1):426–39.

    Article  CAS  PubMed  Google Scholar 

  182. Kirkpatrick WR, McAtee RK, Revankar SG, Fothergill AW, McCarthy DI, Rinaldi MG, et al. Comparative evaluation of National Committee for Clinical Laboratory Standards broth macrodilution and agar dilution screening methods for testing fluconazole susceptibility of Cryptococcus neoformans. J Clin Microbiol. 1998;36:1330–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Viviani MA, Esposto MC, Cogliati M, Tortorano AM. Flucytosine and cryptococcosis: which in vitro test is the best predictor of outcome? J Chemother. 2003;15(2):124–8.

    Article  CAS  PubMed  Google Scholar 

  184. Verweij PE, Mensink M, Rijs A, Donnelly JP, Meis J, Denning DW. In-vitro activities of amphotericin B, itraconazole and voriconazole against 150 clinical and environmental Aspergillus fumigatus isolates. J Antimicrob Chemother. 1998;42(3):389–92.

    Article  CAS  PubMed  Google Scholar 

  185. Sancak B, Ayhan M, Karaduman A, Arikan S. In vitro activity of ketoconazole, itraconazole and terbinafine against Malassezia strains isolated from neonates. Mikrobiyol Bul. 2005;39(3):301–8.

    CAS  PubMed  Google Scholar 

  186. Imhof A, Balajee SA, Marr KA. New methods to assess susceptibilities of Aspergillus isolates to caspofungin. J Clin Microbiol. 2003;41(12):5683–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mock M, Monod M, Baudraz-Rosselet F, Panizzon RG. Tinea capitis dermatophytes: susceptibility to antifungal drugs tested in vitro and in vivo. Dermatology. 1998;197(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  188. Otero L, Palacio V, Mendez FJ, Vazquez F. Boric acid susceptibility testing of non-C-albicans Candida and Saccharomyces cerevisiae: comparison of three methods. Med Mycol. 2002;40(3):319–22.

    Article  CAS  PubMed  Google Scholar 

  189. Banes-Marshall L, Cawley P, Phillips CA. In vitro activity of Melaleuca alternifolia (tea tree) oil against bacterial and Candida spp. isolates from clinical specimens. Br J Biomed Sci. 2001;58(3):139–45.

    CAS  PubMed  Google Scholar 

  190. Astvad KM, Jensen RH, Hassan TM, Mathiasen EG, Thomsen GM, Pedersen UG, et al. First detection of TR46/Y121F/T289A and TR34/L98H alterations in Aspergillus fumigatus isolates from azole-naive patients in Denmark despite negative findings in the environment. Antimicrob Agents Chemother. 2014;58:5096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mortensen KL, Mellado E, Lass-Flörl C, Rodriguez-Tudela JL, Johansen HK, Arendrup MC. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain. Antimicrob Agents Chemother. 2010;54:4545–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Furustrand Tafin U, Clauss M, Hauser PM, Bille J, Meis JF, Trampuz A. Isothermal microcalorimetry: a novel method for real-time determination of antifungal susceptibility of Aspergillus species. Clin Microbiol Infect. 2012;18(7):E241–5.

    Article  CAS  PubMed  Google Scholar 

  193. Furustrand Tafin U, Meis JF, Trampuz A. Microcalorimetry assay for rapid detection of voriconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 2013;57(11):5704–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Furustrand TU, Meis JF, Trampuz A. Isothermal microcalorimetry for antifungal susceptibility testing of Mucorales, Fusarium spp., and Scedosporium spp. Diagn Microbiol Infect Dis. 2012;73(4):330–7.

    Article  CAS  Google Scholar 

  195. Wernli L, Bonkat G, Gasser TC, Bachmann A, Braissant O. Use of isothermal microcalorimetry to quantify the influence of glucose and antifungals on the growth of Candida albicans in urine. J Appl Microbiol. 2013;115(5):1186–93.

    Article  CAS  PubMed  Google Scholar 

  196. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol. 2012;50(7):2479–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, Kostrzewa M, et al. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol. 2013;51(9):2964–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Ernst EJ, Yodoi K, Roling EE, Klepser ME. Rates and extents of antifungal activities of amphotericin B, flucytosine, fluconazole, and voriconazole against Candida lusitaniae determined by microdilution, Etest, and time-kill methods. Antimicrob Agents Chemother. 2002;46(2):578–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Manavathu EK, Cutright JL, Loebenberg D, Chandrasekar PH. A comparative study of the in vitro susceptibilities of clinical and laboratory-selected resistant isolates of Aspergillus spp. to amphotericin B, itraconazole, voriconazole and posaconazole (SCH 56592). J Antimicrob Chemother. 2000;46(2):229–34.

    Article  CAS  PubMed  Google Scholar 

  200. Krishnan S, Manavathu EK, Chandrasekar PH. A comparative study of fungicidal activities of voriconazole and amphotericin B against hyphae of Aspergillus fumigatus. J Antimicrob Chemother. 2005;55(6):914–20.

    Article  CAS  PubMed  Google Scholar 

  201. Barchiesi F, Spreghini E, Tomassetti S, Arzeni D, Giannini D, Scalise G. Comparison of the fungicidal activities of caspofungin and amphotericin B against Candida glabrata. Antimicrob Agents Chemother. 2005;49(12):4989–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Canton E, Peman J, Viudes A, Quindos G, Gobernado M, Espinel-Ingroff A. Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species. Diagn Microbiol Infect Dis. 2003;45(3):203–6.

    Article  CAS  PubMed  Google Scholar 

  203. Ernst EJ, Roling EE, Petzold CR, Keele DJ, Klepser ME. In vitro activity of micafungin (FK-463) against Candida spp.: Microdilution, time-kill, and postantifungal-effect studies. Antimicrob Agents Chemother. 2002;46(12):3846–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pfaller MA, Sheehan DJ, Rex JH. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev. 2004;17(2):268–80. CP1, CP2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Espinel-Ingroff A, Fothergill A, Peter J, Rinaldi MG, Walsh TJ. Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS Collaborative Study. J Clin Microbiol. 2002;40(9):3204–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Espinel-Ingroff A, Chaturvedi V, Fothergill A, Rinaldi MG. Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study. J Clin Microbiol. 2002;40(10):3776–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ernst EJ, Klepser ME, Ernst ME, Messer SA, Pfaller MA. In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis. 1999;33(2):75–80.

    Article  CAS  PubMed  Google Scholar 

  208. Burgess DS, Hastings RW, Summers KK, Hardin TC, Rinaldi MG. Pharmacodynamics of fluconazole, itraconazole, and amphotericin B against Candida albicans. Diagn Microbiol Infect Dis. 2000;36(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  209. Klepser ME, Malone D, Lewis RE, Ernst EJ, Pfaller MA. Evaluation of voriconazole pharmacodynamics using time-kill methodology. Antimicrob Agents Chemother. 2000;44(7):1917–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Toriumi Y, Sugita T, Nakajima M, Matsushima T, Shinoda T. Antifungal pharmacodynamic characteristics of amphotericin B against Trichosporon asahii, using time-kill methodology. Microbiol Immunol. 2002;46(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  211. Hazirolan G, Canton E, Sahin S, Arikan-Akdagli S. Head-to-head comparison of inhibitory and fungicidal activities of fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole against clinical isolates of Trichosporon asahii. Antimicrob Agents Chemother. 2013;57(10):4841–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Pappalardo M, Szeszs MW, Martins MA, Baceti LB, Bonfietti LX, Purisco SU, et al. Susceptibility of clinical isolates of Cryptococcus neoformans to amphotericin B using time-kill methodology. Diagn Microbiol Infect Dis. 2009;64(2):146–51.

    Article  CAS  PubMed  Google Scholar 

  213. Gil-Alonso S, Jauregizar N, Cantón E, Eraso E, Quindós G. In vitro fungicidal activities of anidulafungin, caspofungin and micafungin against Candida glabrata, Candida bracarensis and Candida nivariensis evaluated by time-kill studies. Antimicrob Agents Chemother. 2015;59(6):3615–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Klepser ME, Ernst EJ, Lewis RE, Ernst ME, Pfaller MA. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob Agents Chemother. 1998;42:1207–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Cuenca-Estrella M, Verweij PE, Arendrup MC, Arikan-Akdagli S, Bille J, Donnelly JP, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. Clin Microbiol Infect. 2012;18 Suppl 7:9–18.

    Article  CAS  PubMed  Google Scholar 

  216. Van Der Linden JWM, Arendrup MC, Verweij PE, Scare N, editors. Prospective International Surveillance of Azole Resistance (AR) in Aspergillus fumigatus (Af) (SCARE-Network). 51st Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Chicago, IL: ASM; 2011.

    Google Scholar 

  217. Denning DW, Perlin DS. Azole resistance in Aspergillus: a growing public health menace. Future Microbiol. 2011;6(11):1229–32.

    Article  CAS  PubMed  Google Scholar 

  218. Lewis RE, Diekema DJ, Messer SA, Pfaller MA, Klepser ME. Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J Antimicrob Chemother. 2002;49(2):345–51.

    Article  CAS  PubMed  Google Scholar 

  219. Arikan S, Lozano-Chiu M, Paetznick V, Rex JH. In vitro synergy of caspofungin and amphotericin B against Aspergillus and Fusarium spp. Antimicrob Agents Chemother. 2002;46(1):245–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Velasquez S, Bailey E, Jandourek A. Evaluation of the antifungal activity of Amphotericin B in combination with Fluconazole, Itraconazole, Voriconazole or Posaconazole against Candida species using a Checkerboard method. Clin Infect Dis. 2000;31(1):266.

    Google Scholar 

  221. Dannaoui E, Afeltra J, Meis J, Verweij PE. In vitro susceptibilities of zygomycetes to combinations of antimicrobial agents. Antimicrob Agents Chemother. 2002;46(8):2708–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Cuenca-Estrella M, Gomez-Lopez A, Buitrago MJ, Mellado E, Garcia-Effron G, Rodriguez-Tudela JL. In vitro activities of 10 combinations of antifungal agents against the multiresistant pathogen Scopulariopsis brevicaulis. Antimicrob Agents Chemother. 2006;50(6):2248–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Philip A, Odabasi Z, Rodriguez J, Paetznick VL, Chen E, Rex JH, et al. In vitro synergy testing of anidulafungin with itraconazole, voriconazole, and amphotericin B against Aspergillus spp. and Fusarium spp. Antimicrob Agents Chemother. 2005;49(8):3572–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dannaoui E, Lortholary O, Dromer F. In vitro evaluation of double and triple combinations of antifungal drugs against Aspergillus fumigatus and Aspergillus terreus. Antimicrob Agents Chemother. 2004;48(3):970–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Arikan S, Sancak B, Alp S, Hascelik G, McNicholas P. Comparative in vitro activities of posaconazole, voriconazole, itraconazole, and amphotericin B against Aspergillus and Rhizopus, and synergy testing for Rhizopus. Med Mycol. 2008;46(6):567–73.

    Article  CAS  PubMed  Google Scholar 

  226. Seyedmousavi S, Meletiadis J, Melchers WJ, Rijs AJ, Mouton JW, Verweij PE. In vitro interaction of voriconazole and anidulafungin against triazole-resistant Aspergillus fumigatus. Antimicrob Agents Chemother. 2013;57(2):796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hsieh MH, Yu CM, Yu VL, Chow JW. Synergy assessed by checkerboard. A critical analysis. Diagn Microbiol Infect Dis. 1993;16(4):343–9.

    Article  CAS  PubMed  Google Scholar 

  228. White RL, Burgess DS, Manduru M, Bosso JA. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother. 1996;40:1914–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Kontoyiannis DP, Lewis RE, Sagar N, May G, Prince RA, Rolston KVI. Itraconazole-amphotericin B antagonism in Aspergillus fumigatus: an E-test-based strategy. Antimicrob Agents Chemother. 2000;44(10):2915–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Canton E, Peman J, Gobernado M, Viudes A, Espinel-Ingroff A. Synergistic activities of fluconazole and voriconazole with terbinafine against four Candida species determined by checkerboard, time-kill, and Etest methods. Antimicrob Agents Chemother. 2005;49(4):1593–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Pankey G, Ashcraft D, Kahn H, Ismail A. Time-kill assay and Etest evaluation for synergy with polymyxin B and fluconazole against Candida glabrata. Antimicrob Agents Chemother. 2014;58(10):5795–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Keele DJ, DeLallo VC, Lewis RE, Ernst EJ, Klepser ME. Evaluation of amphotericin B and flucytosine in combination against Candida albicans and Cryptococcus neoformans using time-kill methodology. Diagn Microbiol Infect Dis. 2001;41(3):121–6.

    Article  CAS  PubMed  Google Scholar 

  233. Greco WR, Bravo G, Parsons JC. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev. 1995;47(2):331–85.

    CAS  PubMed  Google Scholar 

  234. Meletiadis J, Mouton JW, Meis J, Verweij PE. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical Scedospotium prolificans isolates. Antimicrob Agents Chemother. 2003;47(1):106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Dorsthorst D, Verweij PE, Meis J, Punt NC, Mouton JW. In vitro interactions between amphotericin B, itraconazole, and flucytosine against 21 clinical Aspergillus isolates determined by two drug interaction models. Antimicrob Agents Chemother. 2004;48(6):2007–13.

    Article  CAS  Google Scholar 

  236. Meletiadis J, Verweij PE, Dorsthorst D, Meis J, Mouton JW. Assessing in vitro combinations of antifungal drugs against yeasts and filamentous fungi: comparison of different drug interaction models. Med Mycol. 2005;43(2):133–52.

    Article  CAS  PubMed  Google Scholar 

  237. Brun YF, Dennis CG, Greco WR, Bernacki RJ, Pera PJ, Bushey JJ, et al. Modeling the combination of amphotericin B, micafungin, and nikkomycin Z against Aspergillus fumigatus in vitro using a novel response surface paradigm. Antimicrob Agents Chemother. 2007;51(5):1804–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Dannaoui E, Lortholary O, Dromer F. Methods for antifungal combination studies in vitro and in vivo in animal models. J Mycologie Medicale. 2003;13(2):73–85.

    Google Scholar 

  239. Kontoyiannis DP, Lewis RE. Combination chemotherapy for invasive fungal infections: what laboratory and clinical studies tell us so far. Drug Resist Updat. 2003;6(5):257–69.

    Article  CAS  PubMed  Google Scholar 

  240. Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH. Combination antifungal therapy. Antimicrob Agents Chemother. 2004;48:693–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Mukherjee PK, Sheehan DJ, Hitchcock CA, Ghannoum MA. Combination treatment of invasive fungal infections. Clin Microbiol Rev. 2005;18(1):163–94. CP4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Candoni A, Aversa F, Busca A, Cesaro S, Girmenia C, Luppi M, et al. Combination antifungal therapy for invasive mould diseases in haematologic patients. An update on clinical data. J Chemother. 2015;27(1):1–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevtap Arikan-Akdagli M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Arikan-Akdagli, S., Rex, J.H. (2017). Fungal Drug Resistance Assays. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_34

Download citation

Publish with us

Policies and ethics