Skip to main content

Advertisement

Log in

A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Effective treatment of infectious diseases depends on the ability to rapidly identify the infecting bacteria and the use of sensitive antibiotics. The currently used identification assays usually take more than 72 h to perform and have a low sensitivity. Herein, we present a microbead-based microfluidic platform that is highly sensitive and rapid for bacterial detection and antibiotic sensitivity testing. The platform includes four units, one of which is used for bacterial identification and the other three are used for susceptibility testing. Our results showed that Escherichia coli O157 at a cell density range of 101–105 CFU/μL could be detected within 30 min. Additionally, the effects of three antibiotics on E. coli O157 were evaluated within 4–8 h. Overall, this integrated microbead-based microdevice provides a sensitive, rapid, reliable, and highly effective platform for the identification of bacteria, as well as antibiotic sensitivity testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272. doi:10.1039/b804911d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carrigan SD, Scott G, Tabrizian M (2004) Toward resolving the challenges of sepsis diagnosis. Clin Chem 50:1301–1314. doi:10.1373/clinchem.2004.032144

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, Huang DT, Osborn T, Stevens D, Talan DA (2006) Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann Emerg Med 48:28–54. doi:10.1016/j.annemergmed.2006.02.015

    PubMed  Google Scholar 

  4. Sauer-Budge AF, Mirer P, Chatterjee A, Klapperich CM, Chargin D, Sharon A (2009) Low cost and manufacturable complete microTAS for detecting bacteria. Lab Chip 9:2803–2810. doi:10.1039/B904854E

    Article  CAS  PubMed  Google Scholar 

  5. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418. doi:10.1038/nature05064

    Article  CAS  PubMed  Google Scholar 

  6. Mujika M, Arana S, Castaño E, Tijero M, Vilares R, Ruano-López JM, Cruz A, Sainz L, Berganza J (2009) Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens Bioelectron 24:1253–1258. doi:10.1016/j.bios.2008.07.024

    Article  CAS  PubMed  Google Scholar 

  7. Srinivasan B, Varshney M, Tung S, Li Y (2005) A microfluidic filter chip for highly sensitive chemiluminescence detection of E. coli O157:H7. In: Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, November 2005. doi:10.1115/IMECE2005-81881

  8. Kinnunen P, Sinn I, McNaughton BH, Newton DW, Burns MA, Kopelman R (2011) Monitoring the growth and drug susceptibility of individual bacteria using asynchronous magnetic bead rotation sensors. Biosens Bioelectron 26:2751–2755. doi:10.1016/j.bios.2010.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sinn I, Kinnunen P, Albertson T, McNaughton BH, Newton DW, Burns MA, Kopelman R (2011) Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements. Lab Chip 11:2604–2611. doi:10.1039/C0LC00734J

    Article  CAS  PubMed  Google Scholar 

  10. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576. doi:10.1002/elps.200305584

    Article  CAS  PubMed  Google Scholar 

  11. Jeon NL, Dertinger SK, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316. doi:10.1021/la000600b

    Article  CAS  Google Scholar 

  12. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. doi:10.1021/ac980656z

    Article  CAS  PubMed  Google Scholar 

  13. Guan X, Zhang HJ, Bi YN, Zhang L, Hao DL (2010) Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic chips. Biomed Microdevices 12:683–691. doi:10.1007/s10544-010-9421-6

    Article  CAS  PubMed  Google Scholar 

  14. Jing W, Zhao W, Liu S, Li L, Tsai C-T, Fan X, Wu W, Li J, Yang X, Sui G (2013) Microfluidic device for efficient airborne bacteria capture and enrichment. Anal Chem 85:5255–5262. doi:10.1021/ac400590c

    Article  CAS  PubMed  Google Scholar 

  15. Mohan R, Mukherjee A, Sevgen SE, Sanpitakseree C, Lee J, Schroeder CM, Kenis PJ (2013) A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 49:118–125. doi:10.1016/j.bios.2013.04.046

    Article  CAS  PubMed  Google Scholar 

  16. Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P, Wang J (2011) High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosens Bioelectron 26:1993–1999. doi:10.1016/j.bios.2010.08.062

    Article  CAS  PubMed  Google Scholar 

  17. Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic–micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8:299–308. doi:10.1007/s10544-006-0033-0

    Article  CAS  PubMed  Google Scholar 

  18. Yang L, Banada PP, Chatni MR, Lim KS, Bhunia AK, Ladisch M, Bashir R (2006) A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab Chip 6:896–905. doi:10.1039/B607061M

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Special Fund for Health Scientific Research in the Public Interest from the National Health and Family Planning Commission of China (no. 201202011).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Zhao or Q. Wang.

Additional information

J. He and X. Mu contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Mu, X., Guo, Z. et al. A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing. Eur J Clin Microbiol Infect Dis 33, 2223–2230 (2014). https://doi.org/10.1007/s10096-014-2182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2182-z

Keywords

Navigation