Skip to main content
Log in

High levels lycopene accumulation by Dietzia natronolimnaea HS-1 using lycopene cyclase inhibitors in a fed-batch process

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In an attempt to accumulate lycopene in the bacterium Dietzia natronolimnaea HS-1 cultured in beet molasses, the influence of lycopene cyclase inhibitors on carotenogenesis (within the range 0–60 ppm) were evaluated. All inhibitors blocked the biosynthesis of canthaxanthin and resulted in accumulation of lycopene as the predominant carotenoid. As the final step of a study aiming at the optimization of culture conditions, a central composite design to a fed-batch process was applied to optimize the concentrations of lycopene cyclase inhibitors (within the range 0–50 ppm) in order to achieve high level accumulation of lycopene from D. natronolimnaea HS-1 cultured in beet molasses. On the basis of this approach, the optimum concentrations of lycopene cyclase inhibitors required to achieve the highest level of lycopene accumulation (8.26±0.17 mg/L) were determined as follows: imidazole, 24.74 ppm; nicotinic acid, 28 ppm; piperidine, 24.05 ppm; pyridine, 27.6 ppm; and triethylamine, 23.22 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biot. 63: 351–361 (2004)

    Article  CAS  Google Scholar 

  2. Bhosale P, Bernstein PS. Microbial xanthophylls. Appl. Microbiol. Biot. 68: 445–455 (2005)

    Article  CAS  Google Scholar 

  3. Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res. 55: 207–216 (2007)

    Article  CAS  Google Scholar 

  4. Perera CO, Yen GM. Functional properties of carotenoids in human health. Int. J. Food. Prop. 10: 201–230 (2007)

    Article  CAS  Google Scholar 

  5. Nelis HJ, De Leenheer AP. Reinvestigation of Brevibacterium sp. strain KY-4313 as a source of canthaxanthin. Appl. Environ. Microb. 55: 2505–2510 (1989)

    CAS  Google Scholar 

  6. Lorquin J, Molouba F, Dreyfus BL. Identification of the carotenoid pigment canthaxanthin from photosynthetic Bradyrhizobium strains. Appl. Environ. Microb. 63: 1151–1154 (1997)

    CAS  Google Scholar 

  7. De Miguel T, Sieiro C, Poza M, Villa TG. Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Int. Microbiol. 3: 107–111 (2000)

    Google Scholar 

  8. Nasri Nasrabadi MR, Razavi SH. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. J. Biosci. Bioeng. 109: 361–368 (2010)

    Article  Google Scholar 

  9. Khodaiyan F, Razavi SH, Mousavi SH. Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods. Biochem. Eng. J. 40: 415–422 (2008)

    Article  CAS  Google Scholar 

  10. Asker D, Ohta Y. Haloferax alexandrinus sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). Int. J. Syst. Evol. Micr. 52: 729–738 (2002)

    Article  CAS  Google Scholar 

  11. Razavi SH, Fabrice B, Marc I. UV-HPLC/APCI-MS method for separation and identification of the carotenoids produced by Sporobolomyces ruberrimus H110. Iran J. Chem. Chem. Eng. 25: 1–10 (2006)

    CAS  Google Scholar 

  12. Razavi SH, Marc I. Effect of temperature and pH on the growth kinetics and carotenoid production by Sporobolomyces ruberrimus H110 using technical glycerol as carbon source. Iran J. Chem. Chem. Eng. 25: 59–64 (2006)

    CAS  Google Scholar 

  13. Giovannucci E. A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer. Exp. Biol. Med. 111: 852–859 (2002)

    Google Scholar 

  14. Hsu WJ, Yokoyama H, De Benedict C. Chemical bioregulation of carotenogenesis in Phycomyces blakesleeanus. Phytochemistry 29: 2447–2451 (1990)

    Article  CAS  Google Scholar 

  15. Elahi M, Chichester CO, Simpson KL. Biosynthesis of carotenoids by Phycomyces blakesleeanus mutants in the presence of nitrogenous heterocyclic compounds. Phytochemistry 12: 1627–1632 (1973)

    Article  CAS  Google Scholar 

  16. Feofilova EP, Tereshina VM, Memorskaya AS. Regulation of lycopene biosynthesis in mucorous fungus Blakeslea trispora by pyridine derivatives. Mikrobiologiya 64: 734–740 (1995)

    CAS  Google Scholar 

  17. Aksu Z, Eren AT. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem. 40: 2985–2991 (2005)

    Article  CAS  Google Scholar 

  18. Goksungur Y, Mantzouridou F, Roukas T. Optimization of the production of β-carotene from molasses by Blakeslea trispora: A statistical approach. J. Chem. Technol. Biot. 77: 933–943 (2002)

    Article  CAS  Google Scholar 

  19. Razavi SH. Détermination de conditions de mise en oeuvre d’une souche nouvellement isolée de Sporobolomyces ruberrimus pour la production de torularhodine. (The effects of different conditions on the production of torularhodine by a new isolated strain of Sporobolomyces ruberrimus.) PhD thesis, Institut National Polytechnique de Lorraine-Laboratoire des Science de Génie Chimique, Nancy, France (2004)

    Google Scholar 

  20. Schiedt K, Liaaen-Jensen S. Isolation and analysis. Vol. I, pp. 81–108. In: Carotenoids. Britton G, Liaaen-Jensen S, Pfander H (eds). Birkhäuser Verlag, Basel, Switzerland (1995)

    Google Scholar 

  21. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem 31: 426–430 (1959)

    Article  CAS  Google Scholar 

  22. Myers RH, Montgomery RC. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, New York, NY, USA. pp. 427–500 (2002)

    Google Scholar 

  23. Nakayama T, Chichester CO, Mackinney G. Phytoene production in Phycomyces. Arch. Biochem. Biophys. 66: 310–315 (1957)

    Article  CAS  Google Scholar 

  24. Ninet L, Renaut J, Tissier R. Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnol. Bioeng. 11: 1195–1210 (1969)

    Article  CAS  Google Scholar 

  25. Cooney JJ, Berry RA. Inhibition of carotenoid synthesis in Micrococcus roseus. Can. J. Microbiol. 27: 421–425 (1981)

    Article  CAS  Google Scholar 

  26. Cerda-Olmedo E, Huettermann A. Stimulation and inhibition of carotene biosynthesis in Phycomyces by aromatic compounds. Angew. Bot. 60: 59–70 (1986)

    CAS  Google Scholar 

  27. Ducrey Sanpietro LM, Kula MR. Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast 14: 1007–1016 (1998)

    Article  CAS  Google Scholar 

  28. Choudhari SM, Ananthanarayan L, Singhal RS. Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technol. 99: 3166–3173 (2008)

    Article  CAS  Google Scholar 

  29. Sandmann G. Carotenoid biosynthesis in microorganisms and plants. Eur. J. Biochem. 223: 7–24 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hadi Razavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasri Nasrabadi, M.R., Razavi, S.H. High levels lycopene accumulation by Dietzia natronolimnaea HS-1 using lycopene cyclase inhibitors in a fed-batch process. Food Sci Biotechnol 19, 899–906 (2010). https://doi.org/10.1007/s10068-010-0127-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0127-6

Keywords

Navigation