Skip to main content

Advertisement

Log in

Associations between D3R expression in synovial mast cells and disease activity and oxidant status in patients with rheumatoid arthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Dopamine D3 receptor (D3R) on immune cells is involved in the pathogenesis of rheumatoid arthritis (RA). Mast cells (MCs) are currently identified as important effector cells in synovial inflammation of RA, but little is known about the role of D3R on synovial MCs in the pathogenesis of RA. Several inflammatory cells in the synovium induce reactive oxygen species (ROS) formation which are involved in the progression of RA. However, it is unclear whether D3R on synovial MCs is related to the levels of ROS in RA patients. In this study, a total of 73 patients with RA were divided into three groups according to disease activity DAS28 scores. The number of cases in group 1, group 2, and group 3 was 19, 26, and 28, respectively. We examined D3R-positive MC numbers in the synovial fluid and ROS levels in each group of RA patients, and we also analyzed the association of D3R-positive MC numbers with RA disease activity and ROS levels. MDA and protein carbonylation in the serum and synovial fluid were measured to reflect the level of lipid peroxidation and protein oxidation, respectively. Additionally, superoxide dismutase (SOD) and catalase (CAT) in the serum and synovial fluid were used to be markers of antioxidant levels. Our results showed that D3R-positive MCs in the synovial fluid showed a declining trend with the increased disease activity DAS28 score in RA patients. There was negative correlation between D3R-positive MC numbers in the synovial fluid and disease severity DAS28 score of RA patients. Moreover, D3R-positive MC numbers in the synovial fluid were negatively correlated with the level of MDA and protein carbonylation while were positively correlated with antioxidant levels such as SOD and CAT in RA patients. Our results suggested that D3R on MCs may be involved in ROS-mediated pathogenesis of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McInnes IB, O'Dell JR (2010) State-of-the-art: rheumatoid arthritis. Ann Rheum Dis 69(11):1898–1906. https://doi.org/10.1136/ard.2010.134684

    Article  PubMed  CAS  Google Scholar 

  2. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388(10055):2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8

    Article  PubMed  CAS  Google Scholar 

  3. Pitman N, Asquith DL, Murphy G, Liew FY, McInnes IB (2011) Collagen-induced arthritis is not impaired in mast cell-deficient mice. Ann Rheum Dis 70(6):1170–1171. https://doi.org/10.1136/ard.2010.134528

    Article  PubMed  Google Scholar 

  4. Pacheco R, Contreras F, Zouali M (2014) The dopaminergic system in autoimmune diseases. Front Immunol 5:117. https://doi.org/10.3389/fimmu.2014.00117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lu JH, Liu YQ, Deng QW, Peng YP, Qiu YH (2015) Dopamine D2 receptor is involved in alleviation of type II collagen-induced arthritis in mice. Biomed Res Int 2015:496759. https://doi.org/10.1155/2015/496759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186(6):3745–3752. https://doi.org/10.4049/jimmunol.1002475

    Article  PubMed  CAS  Google Scholar 

  7. Wei L, Zhang C, Chen HY, Zhang ZJ, Ji ZF, Yue T, Dai XM, Zhu Q, Ma LL, He DY, Jiang LD (2015) Dopamine receptor DR2 expression in B cells is negatively correlated with disease activity in rheumatoid arthritis patients. Immunobiology 220(3):323–330. https://doi.org/10.1016/j.imbio.2014.10.016

    Article  PubMed  CAS  Google Scholar 

  8. Xu Y, Chen G (2015) Mast cell and autoimmune diseases. Mediat Inflamm 2015:246126–246128. https://doi.org/10.1155/2015/246126

    Article  CAS  Google Scholar 

  9. Schubert N, Dudeck J, Liu P, Karutz A, Speier S, Maurer M, Tuckermann J, Dudeck A (2015) Mast cell promotion of T cell-driven antigen-induced arthritis despite being dispensable for antibody-induced arthritis in which T cells are bypassed. Arthritis Rheum 67(4):903–913. https://doi.org/10.1002/art.38996

    Article  CAS  Google Scholar 

  10. Xue L, Li X, Ren HX, Wu F, Li M, Wang B, Chen FY, Cheng WY, Li JP, Chen YJ, Chen T (2015) The dopamine D3 receptor regulates the effects of methamphetamine on LPS-induced cytokine production in murine mast cells. Immunobiology 220(6):744–752. https://doi.org/10.1016/j.imbio.2014.12.021

    Article  PubMed  CAS  Google Scholar 

  11. Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ (2016) The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int Immunopharmacol 36:187–198. https://doi.org/10.1016/j.intimp.2016.04.030

    Article  PubMed  CAS  Google Scholar 

  12. Filippin LI, Vercelino R, Marroni NP, Xavier RM (2008) Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol 152(3):415–422. https://doi.org/10.1111/j.1365-2249.2008.03634.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vasanthi P, Nalini G, Rajasekhar G (2009) Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis 12(1):29–33. https://doi.org/10.1111/j.1756-185X.2009.01375.x

    Article  PubMed  Google Scholar 

  14. Mateen S, Zafar A, Moin S, Khan AQ, Zubair S (2016) Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 455:161–171. https://doi.org/10.1016/j.cca.2016.02.010

    Article  PubMed  CAS  Google Scholar 

  15. Mateen S, Moin S, Khan AQ, Zafar A, Fatima N, Shahzad S (2017) Role of hydrotherapy in the amelioration of oxidant-antioxidant status in rheumatoid arthritis patients. Int J Rheum Dis. https://doi.org/10.1111/1756-185X.13118

  16. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324

    Article  PubMed  CAS  Google Scholar 

  17. Prevoo ML, van 't Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38(1):44–48

    Article  PubMed  CAS  Google Scholar 

  18. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6(2):135–142. https://doi.org/10.1038/ni1158

    Article  PubMed  CAS  Google Scholar 

  19. Abramson J, Pecht I (2007) Regulation of the mast cell response to the type 1 Fc epsilon receptor. Immunol Rev 217:231–254. https://doi.org/10.1111/j.1600-065X.2007.00518.x

    Article  PubMed  CAS  Google Scholar 

  20. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  21. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  22. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186(1):189–195

    Article  PubMed  CAS  Google Scholar 

  23. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  24. Suurmond J, Dorjee AL, Boon MR, Knol EF, Huizinga TW, Toes RE, Schuerwegh AJ (2011) Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and -negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Res Ther 13(5):R150. https://doi.org/10.1186/ar3466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Reber LL, Frossard N (2014) Targeting mast cells in inflammatory diseases. Pharmacol Ther 142(3):416–435. https://doi.org/10.1016/j.pharmthera.2014.01.004

    Article  PubMed  CAS  Google Scholar 

  26. Lee DM, Friend DS, Gurish MF, Benoist C, Mathis D, Brenner MB (2002) Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297(5587):1689–1692. https://doi.org/10.1126/science.1073176

    Article  PubMed  CAS  Google Scholar 

  27. Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, Radermacher P, Moller P, Benoist C, Mathis D, Fehling HJ, Rodewald HR (2011) Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35(5):832–844. https://doi.org/10.1016/j.immuni.2011.09.015

    Article  PubMed  CAS  Google Scholar 

  28. Eklund KK (2007) Mast cells in the pathogenesis of rheumatic diseases and as potential targets for anti-rheumatic therapy. Immunol Rev 217:38–52. https://doi.org/10.1111/j.1600-065X.2007.00504.x

    Article  PubMed  CAS  Google Scholar 

  29. McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132(1–2):34–40

    Article  PubMed  CAS  Google Scholar 

  30. Arreola R, Alvarez-Herrera S, Perez-Sanchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, Garces-Alvarez ME, de la Cruz-Aguilera DL, Medina-Rivero E, Hurtado-Alvarado G, Quintero-Fabian S, Pavon L (2016) Immunomodulatory effects mediated by dopamine. J Immunol Res 2016:3160486. https://doi.org/10.1155/2016/3160486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Capellino S, Cosentino M, Wolff C, Schmidt M, Grifka J, Straub RH (2010) Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann Rheum Dis 69(10):1853–1860. https://doi.org/10.1136/ard.2009.119701

    Article  PubMed  CAS  Google Scholar 

  32. Nakashioya H, Nakano K, Watanabe N, Miyasaka N, Matsushita S, Kohsaka H (2011) Therapeutic effect of D1-like dopamine receptor antagonist on collagen-induced arthritis of mice. Mod Rheumatol 21(3):260–266. https://doi.org/10.1007/s10165-010-0387-2

    Article  PubMed  CAS  Google Scholar 

  33. Capellino S, Cosentino M, Luini A, Bombelli R, Lowin T, Cutolo M, Marino F, Straub RH (2014) Increased expression of dopamine receptors in synovial fibroblasts from patients with rheumatoid arthritis: inhibitory effects of dopamine on interleukin-8 and interleukin-6. Arthritis Rheum 66(10):2685–2693. https://doi.org/10.1002/art.38746

    Article  CAS  Google Scholar 

  34. Datta S, Kundu S, Ghosh P, De S, Ghosh A, Chatterjee M (2014) Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin Rheumatol 33(11):1557–1564. https://doi.org/10.1007/s10067-014-2597-z

    Article  PubMed  Google Scholar 

  35. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89–96

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Khojah HM, Ahmed S, Abdel-Rahman MS, Hamza AB (2016) Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free Radic Biol Med 97:285–291. https://doi.org/10.1016/j.freeradbiomed.2016.06.020

    Article  PubMed  CAS  Google Scholar 

  37. Kamanli A, Naziroglu M, Aydilek N, Hacievliyagil C (2004) Plasma lipid peroxidation and antioxidant levels in patients with rheumatoid arthritis. Cell Biochem Funct 22(1):53–57. https://doi.org/10.1002/cbf.1055

    Article  PubMed  CAS  Google Scholar 

  38. Lipinska J, Lipinska S, Stanczyk J, Sarniak A, Przyminska vel Prymont A, Kasielski M, Smolewska E (2015) Reactive oxygen species and serum antioxidant defense in juvenile idiopathic arthritis. Clin Rheumatol 34(3):451–456. https://doi.org/10.1007/s10067-014-2571-9

    Article  PubMed  Google Scholar 

  39. Kennedy A, Ng CT, Chang TC, Biniecka M, O'Sullivan JN, Heffernan E, Fearon U, Veale DJ (2011) Tumor necrosis factor blocking therapy alters joint inflammation and hypoxia. Arthritis Rheum 63(4):923–932. https://doi.org/10.1002/art.30221

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the Shaanxi Province Natural Science Fund (2017JQ8032), the Fundamental Research Funds for the Central Universities of China (no. xjj2016109 to Xue Li), and the Key Project of the Second Affiliated Hospital of Xi’an Jiaotong University (YJ(ZD)201614 to Xue Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Geng.

Ethics declarations

Disclosures

None.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the Research Committee of Human Investigation of Medical College of Xi’an Jiaotong University. All participants gave informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Li, X., Chen, Q. et al. Associations between D3R expression in synovial mast cells and disease activity and oxidant status in patients with rheumatoid arthritis. Clin Rheumatol 37, 2621–2632 (2018). https://doi.org/10.1007/s10067-018-4168-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-018-4168-1

Keywords

Navigation