Skip to main content
Log in

Serum from children with polyarticular juvenile idiopathic arthritis (pJIA) inhibits differentiation, mineralization and may increase apoptosis of human osteoblasts “in vitro”

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

We examined the effects of polyarticular juvenile idiopathic arthritis (pJIA) serum on proliferation, differentiation, mineralization, and apoptosis of human osteoblast cells (hOb) in culture. The hOb were cultured with 10% serum from active pJIA and healthy controls (CT) and were tested for DNA synthesis, alkaline phosphatase (AP) activity, osteocalcin (OC) secretion, calcium levels, caspase 3 activity, and DNA fragmentation. None of the patients had used glucocorticoids for at least 1 month before the study, or any other drug that can affect bone mineral metabolism. Human inflammatory cytokine levels (IL-6, IL-8, IL-10, IL-1β, TNF-α, and IL-12p70) were measured in pJIA and CT sera. Low levels of AP activity was observed in pJIA cultures compared with CT cultures (67.16 ± 53.35 vs 100.11 ± 50.64 μmol p-nitrophenol/h−1 mg−1 protein, P = 0.008). There was also a significant decrease in OC secretion (9.23 ± 5.63 vs 12.82 ± 7.02 ng/mg protein, P = 0.012) and calcium levels (0.475 ± 0.197 vs 0.717 ± 0.366 mmol/l, P = 0.05) in pJIA hOb cultures. No difference was observed in cell proliferation (323.56 ± 108.23 vs 328.91 ± 88.03 dpm/mg protein, P = 0.788). Osteoblasts cultured with JIA sera showed lower levels of DNA and increased fragmentation than osteoblasts cultured with CT sera. pJIA sera showed higher IL-6 values than CT (21.44 ± 9.31 vs 3.58 ± 2.38 pg/ml, P < 0.001), but no difference was observed related to IL-8, IL-10, IL-1β, TNF-α, and IL-12p70 between pJIA and controls. This study suggests that serum from children with pJIA inhibits differentiation, mineralization and may increase apoptosis of hOb cultures, and inflammatory cytokines such as IL-6 might be a mechanism in this find. These results may represent an alternative therapeutic target for prevention and treatment of bone loss in JIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Juvenile rheumatoid arthritis. In: Cassidy JT, Petty RE (1995) Textbook of pediatric rheumatology. Philadelphia WB, pp 133–223

  2. Pepmueller PH, Cassidy JT, Allen SH et al (1996) Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis Rheum 39:746–757

    Article  PubMed  CAS  Google Scholar 

  3. Pereira RMR, Corrente JE, Chahade WH et al (1998) Evaluation by dual X-ray absorptiometry (DXA) of bone mineral density in children with juvenile chronic arthritis. Clin Exp Rheumatol 16:495–501

    PubMed  CAS  Google Scholar 

  4. Hopp RJ, Degan JA, Gallagher JC et al (1991) Estimation of bone mineral density in children with juvenile rheumatoid arthritis. J Rheumatol 218:1235–1239

    Google Scholar 

  5. Elsasser U, Wilkins B, Hesp R et al (1982) Bone rarefaction and crush fractures in juvenile chronic arthritis. Arch Dis Child 57:377–380

    Article  PubMed  CAS  Google Scholar 

  6. Varonos S, Ansell BM, Reeve J (1987) Vertebral collapse in juvenile chronic arthritis: its relationship with glucocorticoid therapy. Calcif Tissue Int 41:75–78

    Article  PubMed  CAS  Google Scholar 

  7. Cassidy JT (1999) Osteopenia and osteoporosis in children. Clin Exp Rheumatol 17:245–250

    PubMed  CAS  Google Scholar 

  8. Bianchi ML (2002) Glucocorticoids and bone: some general remarks and some special observations in pediatric patients. Calcif Tissue Int 70:384–390

    Article  PubMed  CAS  Google Scholar 

  9. Yilmaz M, Kendirli SG, Altintas D et al (2001) Cytokine levels in serum of patients with juvenile rheumatoid arthritis. Clin Rheumatol 20:30–35

    Article  PubMed  CAS  Google Scholar 

  10. Walsh NC, Crotti TN, Goldring SR et al (2005) Rheumatic diseases: the effects of inflammation on bone. Immunol Rev 208:228–251

    Article  PubMed  CAS  Google Scholar 

  11. Horowitz J, Lorenzo J (2002) Local regulators of bone: IL-1, TNF and lymphotoxin, interferon gamma, IL-8, IL-10, IL-4, the LIF/IL-6 family and additional cytokines. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic, San Diego,, pp 961–977

    Chapter  Google Scholar 

  12. Manolagas SC, Jilka RL (1995) Bone marrow, cytokines and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 232:305–311

    Article  Google Scholar 

  13. Grcevic D, Katavic V, Lukic IK et al (2001) Cellular and molecular interactions between immune system and bone. Croat Med J 42:384–391

    PubMed  CAS  Google Scholar 

  14. Pereira RMR, Corrente JE, Chahade WH et al (1999) Abnormalities in biochemical markers of bone turnover in children with juvenile chronic arthritis. Clin Exp Rheumatol 17:251–255

    PubMed  CAS  Google Scholar 

  15. Falcini F, Ermini M, Bagnoli F (1998) Bone turnover is reduced in children with juvenile rheumatoid arthritis. J Endocrinol Invest 21:31–36

    PubMed  CAS  Google Scholar 

  16. Reed A, Haugen M, Pachman LM et al (1990) Abnormalities in serum osteocalcin values in children with chronic rheumatic diseases. J Pediatr 116:574–580

    Article  PubMed  CAS  Google Scholar 

  17. Aubin JE, Triffit JT (2002) Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic, San Diego, pp 59–81

    Chapter  Google Scholar 

  18. Jilka RL, Weinstein RS, Bellido T et al (1998) Osteoblast programmed cell death (apoptosis): Modulation by growth factors and cytokines. J Bone Miner Res 13:793–802

    Article  PubMed  CAS  Google Scholar 

  19. Petty RE, Southwood TR, Baum J et al (1997) Revision of the proposed classification criteria for juvenile idiopathic arthritis. J Rheumatol 25:1991–1994

    Google Scholar 

  20. Tanner JM (1962) Growth at adolescence, 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  21. Human osteoblast culture. In: Helfrich MH, Ralston SH (2003) Bone research protocols. Humana, Totowa, New Jersey pp 3–18

  22. Pereira RM, Delany AM, Canalis E (2001) Cortisol inhibits the differentiation and apoptosis of osteoblasts in cultures. Bone 28:484–490

    Article  PubMed  CAS  Google Scholar 

  23. Varghese S, Wyzga N, Griffiths AM et al (2002) Effects of serum from children with newly diagnosed Crohn disease on primary cultures of rat osteoblasts. J Pedriatr Gastroenterol Nutr 35:641–648

    Article  CAS  Google Scholar 

  24. Fromigué O, Marie PJ, Lomri A (1997) Differential effects of transforming growth factor-b2, dexamethasone and 1,25-dihydroxyvitamin D on human bone marrow stromal cells. Cytokine 9:613–623

    Article  PubMed  Google Scholar 

  25. Morgan E, Varro R, Sepulveda H et al (2004) Cytomertric bed array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol 110:252–266

    Article  PubMed  CAS  Google Scholar 

  26. Taylor AK, Lueken SA, Libanati C et al (1994) Biochemical markers of bone turnover for the clinical assessment of bone metabolism. Rheum Dis Clin North Am 20:589–607

    PubMed  CAS  Google Scholar 

  27. Ducy P, Desbois C, Boyce B et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    Article  PubMed  CAS  Google Scholar 

  28. Stein GS, Lian JB (1993) Molecular mechanism mediating proliferation/ differentiation interrelationship during progressive development of osteoblast phenotype. Endocr Rev 14:424–442

    Article  PubMed  CAS  Google Scholar 

  29. Tsuboi M, Kawakami A, Nakashima T et al (1999) Tumor necrosis factor-alpha and interleukin-1beta increase the Fas-mediated apoptosis of human osteoblasts. J Lab Clin Med 134:222–231

    Article  PubMed  CAS  Google Scholar 

  30. Kallio A, Guo T, Lamminen E et al (2008) Estrogen and the selective estrogen receptor modulator (SERM) protection against cell death in estrogen receptor alpha and beta expressing U2OS cells. Mol Cell Endocrinol 289:38–48

    Google Scholar 

  31. Goldring SR (2003) Inflammatory mediators as essential elements in bone remodeling. Calcif Tissue Int 73:97–100

    Article  PubMed  CAS  Google Scholar 

  32. Roodman GD (1992) Interleukin-6: an osteotropic factor? J Bone Miner Res 7:475–478

    PubMed  CAS  Google Scholar 

  33. Rusinska A, Chlebna-Sokol D (2005) Evaluation of interleukin-1 and -6 in the etiopathogenesis of idiopathic osteoporosis and osteopenia in children. Arch Immunol Ther Exp (Warsz) 53:257–265

    CAS  Google Scholar 

  34. Franchimont N, Wertz S, Malaise M (2005) Interleukin-6: an osteotropic factor influencing bone formation? Bone 37:601–606

    Article  PubMed  CAS  Google Scholar 

  35. Littlewood AJ, Aarden LA, Evans DB et al (1991) Human osteoblast like cells do not respond to interleukin-6. J Bone Miner Res 6:141–148

    Article  PubMed  CAS  Google Scholar 

  36. Kim C-H, Cheng S-L, Him GS (1997) Lack of autocrine effects of IL-6 on human bone marrow stromal osteoprogenitor cells. Endocr Res 23:181–90

    Article  PubMed  CAS  Google Scholar 

  37. Hughes FJ, Howells GL (1993) Interleukin-6 inhibits bone formation in vitro. Bone Miner 21:21–28

    Article  PubMed  CAS  Google Scholar 

  38. Kitamura H, Kawata H, Takahashi F et al (1995) Bone marrow neutrophilia and suppressed bone turnover in human interleukin-6 transgenic mice. Am J Pathol 147:1682–1692

    PubMed  CAS  Google Scholar 

  39. Baker PJ, Dixon M, Evans RT et al (1999) CD4+ T cells and proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun 67:2804–2809

    PubMed  CAS  Google Scholar 

  40. Alonzi T, Fattori E, Lazzaro D et al (1998) Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 187:461–468

    Article  PubMed  CAS  Google Scholar 

  41. Sylvester FA, Wyzga N, Hyams JS et al (2002) Effect of Crohn’s disease on bone metabolism in vitro: a role for interleukin-6. J B Min Res 17:695–702

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPESP # 01/13835-6. Paula L. Regio was the recipient of PIBIC fellowship (# 80.30.70/87.0)

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. R. Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caparbo, V.F., Prada, F., Silva, C.A.A. et al. Serum from children with polyarticular juvenile idiopathic arthritis (pJIA) inhibits differentiation, mineralization and may increase apoptosis of human osteoblasts “in vitro”. Clin Rheumatol 28, 71–77 (2009). https://doi.org/10.1007/s10067-008-0985-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-008-0985-y

Keywords

Navigation