Skip to main content

Advertisement

Log in

Inflammatory Mediators as Essential Elements in Bone Remodeling

  • Controversies and Coutnerpoints
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Inflammatory disorders such as rheumatoid arthritis (RA), may have profound effects on skeletal homeostasis. In contrast to physiologic remodeling in which mechanical influences and/or systemic endocrine hormones initiate the remodeling process, in disorders such as RA the recruitment of macrophage lineage cells to sites of inflammation and the action of local osteoclastogenic cytokines associated with the inflammatory process initiate the remodeling process. In both physiologic and pathologic remodeling, osteoclasts appear to be the principal cell type responsible for the bone resorption. In addition, many of the same cytokines and mediators are involved in physiologic and pathologic bone remodeling. These observations have important implications with respect to the development of therapeutic strategies to prevent bone loss in inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DB Burr (2002) ArticleTitleTargeted and nontargeted remodeling. Bone 30 2–4 Occurrence Handle10.1016/S8756-3282(01)00619-6 Occurrence Handle1:STN:280:DC%2BD38%2FmvVWmsg%3D%3D Occurrence Handle11792556

    Article  CAS  PubMed  Google Scholar 

  2. AM Parfitt (2002) ArticleTitleTargeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30 5–7 Occurrence Handle10.1016/S8756-3282(01)00642-1 Occurrence Handle1:STN:280:DC%2BD38%2FmvVWksQ%3D%3D Occurrence Handle11792557

    Article  CAS  PubMed  Google Scholar 

  3. A Parfitt (2001) ArticleTitleTargeted and non-targeted bone remodeling: relationship to BMU origination and progression. Bone 30 585–587

    Google Scholar 

  4. RB Martin (2002) ArticleTitleIs all cortical bone remodeling initiated by microdamage? Bone 30 8–13 Occurrence Handle10.1016/S8756-3282(01)00620-2 Occurrence Handle1:STN:280:DC%2BD38%2FmvVWktA%3D%3D Occurrence Handle11792558

    Article  CAS  PubMed  Google Scholar 

  5. LC Hofbauer S Khosla CR Dunstan et al. (2000) ArticleTitleThe roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15 2–12 Occurrence Handle1:CAS:528:DC%2BD3cXmsVygsQ%3D%3D Occurrence Handle10646108

    CAS  PubMed  Google Scholar 

  6. T Suda N Takahashi N Udagawa et al. (1999) ArticleTitleModulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20 345–357 Occurrence Handle10368775

    PubMed  Google Scholar 

  7. S Teitelbaum (2000) ArticleTitleBone resorption by osteoclasts. Science 289 1504–1508 Occurrence Handle10.1126/science.289.5484.1504 Occurrence Handle10968780

    Article  PubMed  Google Scholar 

  8. SR Goldring EM Gravallese (2000) ArticleTitlePathogenesis of bone erosions in rheumatoid arthritis. Curr Opin Rheumatol 12 195–199 Occurrence Handle10.1097/00002281-200005000-00006 Occurrence Handle10803748

    Article  PubMed  Google Scholar 

  9. WS Simonet DL Lacey CR Dunstan et al. (1997) ArticleTitleOsteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89 309–319 Occurrence Handle9108485

    PubMed  Google Scholar 

  10. E Romas M Gillespie T Martin (2002) ArticleTitleInvolvement of receptor activator of NF-κβ ligand and tumor necrosis factor-α in bone destruction in rheumatoid arthritis. Bone 30 340–346 Occurrence Handle10.1016/S8756-3282(01)00682-2 Occurrence Handle1:CAS:528:DC%2BD38Xhtleqsr8%3D Occurrence Handle11856640

    Article  CAS  PubMed  Google Scholar 

  11. H Kanzaki M Chiba Y Shimizu et al. (2002) ArticleTitlePeriodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via PGE2 synthesis. J Bone Miner Res 17 210–220 Occurrence Handle1:CAS:528:DC%2BD38XhtVymtbY%3D Occurrence Handle11811551

    CAS  PubMed  Google Scholar 

  12. T Bateman C Dunstan V Ferguson et al. (2000) ArticleTitleOsteoprotegerin mitigates tail suspension-induced osteopenia. Bone 26 443–449 Occurrence Handle1:CAS:528:DC%2BD3cXisFGruro%3D Occurrence Handle10773583

    CAS  PubMed  Google Scholar 

  13. Y Kobayashi F Hashimoto H Miyamoto et al. (2000) ArticleTitleForce-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression. J Bone Miner Res 15 1924–1934 Occurrence Handle1:CAS:528:DC%2BD3cXnsVCltbc%3D Occurrence Handle11028444

    CAS  PubMed  Google Scholar 

  14. SR Goldring EM Gravallese (2000) ArticleTitleMechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Res 2 33–37 Occurrence Handle10.1186/ar67 Occurrence Handle1:STN:280:DC%2BD3M7lsVOmug%3D%3D Occurrence Handle11094416

    Article  CAS  PubMed  Google Scholar 

  15. EM Gravallese C Manning A Tsay et al. (2000) ArticleTitleSynovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 43 250–258 Occurrence Handle1:STN:280:DC%2BD3c7lsFGgsg%3D%3D Occurrence Handle10693863

    CAS  PubMed  Google Scholar 

  16. DR Haynes TN Crotti M Loric et al. (2001) ArticleTitleOsteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint. Rheumatology (Oxford) 40 623–630 Occurrence Handle10.1093/rheumatology/40.6.623 Occurrence Handle1:CAS:528:DC%2BD3MXlsFSiu70%3D

    Article  CAS  Google Scholar 

  17. T Kuratani K Nagata T Kukita et al. (1998) ArticleTitleInduction of abundant osteoclast-like multinucleated giant cells in adjuvant arthritic rats with accompanying disordered high bone turnover. Histol Histopathol 13 751–759 Occurrence Handle1:STN:280:DyaK1czlsVGqsg%3D%3D Occurrence Handle9690133

    CAS  PubMed  Google Scholar 

  18. E Romas O Bakharevski DK Hards et al. (2000) ArticleTitleExpression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum 43 821–826 Occurrence Handle10765926

    PubMed  Google Scholar 

  19. Y Suzuki F Nishikaku M Nakatuka et al. (1998) ArticleTitleOsteoclast-like cells in murine collagen-induced arthritis. J Rheumatol 25 1154–1160 Occurrence Handle1:CAS:528:DyaK1cXjvVemtr4%3D Occurrence Handle9632079

    CAS  PubMed  Google Scholar 

  20. Y Fujikawa M Shingu T Torisu et al. (1996) ArticleTitleBone resorption by tartrate-resistant acid phosphatase-positive multinuclear cells isolated from rheumatoid synovium. Br J Rheumatol 35 213–217 Occurrence Handle1:STN:280:BymC1Mvhslw%3D Occurrence Handle8620294

    CAS  PubMed  Google Scholar 

  21. JS Chang JM Quinn A Demaziere et al. (1992) ArticleTitleBone resorption by cells isolated from rheumatoid synovium. Ann Rheum Dis 51 223–1229

    Google Scholar 

  22. Y Suzuki Y Tsutsumi M Nakagawa et al. (2001) ArticleTitleOsteoclast-like cells in an in vitro model of bone destruction by rheumatoid synovium. Rheumatology (Oxford) 40 673–682 Occurrence Handle10.1093/rheumatology/40.6.673 Occurrence Handle1:CAS:528:DC%2BD3MXlsFSiu7k%3D

    Article  CAS  Google Scholar 

  23. A Pettit J Hong D von Stechow et al. (2001) ArticleTitleTRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 159 1689–1699 Occurrence Handle1:STN:280:DC%2BD3Mnltl2rsA%3D%3D Occurrence Handle11696430

    CAS  PubMed  Google Scholar 

  24. K Redlich S Hayer A Maier et al. (2002) ArticleTitleTumor necrosis factor-α-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum 46 785–792 Occurrence Handle10.1002/art.10097 Occurrence Handle1:CAS:528:DC%2BD38XisFOmtL0%3D Occurrence Handle11920416

    Article  CAS  PubMed  Google Scholar 

  25. YY Kong U Feige I Sarosi et al. (1999) ArticleTitleActivated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402 304–309 Occurrence Handle10580503

    PubMed  Google Scholar 

  26. NJ Horwood V Kartsogiannis JMW Quinn et al. (1999) ArticleTitleActivated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun 265 144–150 Occurrence Handle10.1006/bbrc.1999.1623 Occurrence Handle10548505

    Article  PubMed  Google Scholar 

  27. H Takayanagi H Iizuka T Juji et al. (2000) ArticleTitleInvolvement of receptor activator of nuclear factor kappa-β ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 43 259–269 Occurrence Handle1:CAS:528:DC%2BD3cXhs1aqtLw%3D Occurrence Handle10693864

    CAS  PubMed  Google Scholar 

  28. M Tsuboi A Kawakami T Nakashima et al. (1999) ArticleTitleTumor necrosis factor-alpha and interleukin-1beta increase the Fas-mediated apoptosis of human osteoblasts. J Lab Clin Med 134 190–191 Occurrence Handle10482302

    PubMed  Google Scholar 

  29. S Chen D Guttridge E Tang et al. (2001) ArticleTitleSuppression of tumor necrosis factor-mediated apoptosis by nuclear factor kappaβ-independent bone morphogenetic protein/Smad signaling. J Biol Chem 276 39259–39263 Occurrence Handle10.1074/jbc.M105335200 Occurrence Handle1:CAS:528:DC%2BD3MXnvVemsbw%3D Occurrence Handle11500509

    Article  CAS  PubMed  Google Scholar 

  30. S Shimizu S Shiozawa K Shiozawa et al. (1985) ArticleTitleQuantitative histologic studies on the pathogenesis of periarticular osteoporosis in rheumatoid arthritis. Arthritis Rheum 28 25–31 Occurrence Handle1:STN:280:BiqD1Mjht1Y%3D Occurrence Handle3966938

    CAS  PubMed  Google Scholar 

  31. M Bromley DE Woolley (1984) ArticleTitleHistopathology of the rheumatoid lesion: identification of cell types at sites of cartilage erosion. Arthritis Rheum 27 857–863 Occurrence Handle6466394

    PubMed  Google Scholar 

  32. SR Goldring (1996) Osteoporosis and rheumatic diseases. MJ Favus (Eds) Primer on the metabolic bone diseases and disorders of mineral metabolism, 3rd ed. Lippincott-Raven Philadelphia 299–301

    Google Scholar 

  33. SR Goldring RP Polisson (1998) Bone disease in rheumatological disorders. L Avioli SM Krane (Eds) Metabolic bone disease, 2nd ed. Academic Press San Diego 621–635

    Google Scholar 

  34. K Saag K Rochelle J Caldwell et al. (1994) ArticleTitleLow-dose long-term corticosteroid therapy in rheumatoid arthritis: an analysis of serious adverse events. Am J Med 96 115–123 Occurrence Handle1:STN:280:ByuC2M3ms1M%3D Occurrence Handle8109596

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Goldring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldring, S. Inflammatory Mediators as Essential Elements in Bone Remodeling . Calcif Tissue Int 73, 97–100 (2003). https://doi.org/10.1007/s00223-002-1049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-002-1049-y

Keywords

Navigation