Skip to main content
Log in

Olfactory carbon dioxide detection by insects and other animals

  • Minireview
  • Published:
Molecules and Cells

Abstract

Carbon dioxide is a small, relatively inert, but highly volatile gas that not only gives beer its bubbles, but that also acts as one of the primary driving forces of anthropogenic climate change. While beer brewers experiment with the effects of CO2 on flavor and climate scientists are concerned with global changes to ambient CO2 levels that take place over the course of decades, many animal species are keenly aware of changes in CO2 concentration that occur much more rapidly and on a much more local scale. Although imperceptible to us, these small changes in CO2 concentration can indicate imminent danger, signal overcrowding, and point the way to food. Here I review several of these CO2-evoked behaviors and compare the systems insects, nematodes, and vertebrates use to detect environmental CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai, M., Min, S., Grosjean, Y., Leblanc, C., Bell, R., Benton, R., and Suh, G.S.B. (2010). Acid sensing by the Drosophila olfactory system. Nature 468, 691–695.

    Article  PubMed  CAS  Google Scholar 

  • Badsha, F., Kain, P., Prabhakar, S., Sundaram, S., Padinjat, R., Rodrigues, V., and Hasan, G. (2012). Mutants in Drosophila TRPC channels reduce olfactory sensitivity to carbon dioxide. PLoS One 7, e49848.

    Article  PubMed  CAS  Google Scholar 

  • Barrozo, R.B., and Lazzari, C.R. (2006). Orientation response of haematophagous bugs to CO2: the effect of the temporal structure of the stimulus. J. Comp. Phys. A 192, 827–831.

    Article  CAS  Google Scholar 

  • Bensafi, M., Iannilli, E., Gerber, J., and Hummel, T. (2008). Neural coding of stimulus concentration in the human olfactory and intranasal trigeminal systems. Neuroscience 154, 832–838.

    Article  PubMed  CAS  Google Scholar 

  • Benton, A.H., and Lee, S.Y. (1965). Sensory reactions of Siphonaptera in relation to host-finding. Am. Midland Nat. 119–125.

  • Benton, R., Vannice, K.S., Gomez-Diaz, C., and Vosshall, L.B. (2009). Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136, 149–162.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher, A.J., Busch, K.E., and de Bono, M. (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 8044–8049.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher, A.J., Kodama-Namba, E., Busch, K.E., Murphy, R.J., Soltesz, Z., Laurent, P., and de Bono, M. (2011). Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69, 1099–1113.

    Article  PubMed  CAS  Google Scholar 

  • Buehlmann, C., Hansson, B.S., and Knaden, M. (2012). Path integration controls nest-plume following in desert ants. Curr. Biol. 22, 645–649.

    Article  PubMed  CAS  Google Scholar 

  • Croset, V., Rytz, R., Cummins, S.F., Budd, A., Brawand, D., Kaessmann, H., Gibson, T.J., and Benton, R. (2010). Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 6, e1001064.

    Article  PubMed  Google Scholar 

  • de Bruyne, M., Foster, K., and Carlson, J.R. (2001). Odor coding in the Drosophila antenna. Neuron 30, 537–552.

    Article  PubMed  Google Scholar 

  • Dessirier, J.M., Simons, C.T., Carstens, M.I., O’Mahony, M., and Carstens, E. (2000). Psychophysical and neurobiological evidence that the oral sensation elicited by carbonated water is of chemogenic origin. Chem. Senses 25, 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Dillman, A.R., Guillermin, M.L., Lee, J.H., Kim, B., Sternberg, P.W., and Hallem, E.A. (2012). Olfaction shapes host-parasite interactions in parasitic nematodes. Proc. Natl. Acad. Sci. USA 109, E2324–E2333.

    Article  PubMed  CAS  Google Scholar 

  • Fallis, A.M., and Raybould, J.N. (1975). Response of two African simuliids to silhouettes and carbon dioxide. J. Med. Ent. 12, 349–351.

    CAS  Google Scholar 

  • Fülle, H.J., Vassar, R., Foster, D.C., Yang, R.B., Axel, R., and Garbers, D.L. (1995). A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 92, 3571–3575.

    Article  PubMed  Google Scholar 

  • Gibson, G., and Torr, S.J. (1999). Visual and olfactory responses of haematophagous Diptera to host stimuli. Med. Vet. Ent. 13, 2–23.

    Article  CAS  Google Scholar 

  • Gillies, M.T. (1980). The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull. Entomol. Res. 70, 525–532.

    Article  Google Scholar 

  • Graber, M., and Kelleher, S. (1988). Side effects of acetazolamide: the champagne blues. Am. J. Med. 84, 979–980.

    Article  PubMed  CAS  Google Scholar 

  • Guo, D., Zhang, J.J., and Huang, X.-Y. (2009). Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48, 4417–4422.

    Article  PubMed  CAS  Google Scholar 

  • Hallem, E.A., and Sternberg, P.W. (2008). Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 8038–8043.

    Article  PubMed  CAS  Google Scholar 

  • Hallem, E.A., Dillman, A.R., Hong, A.V., Zhang, Y., Yano, J.M., DeMarco, S.F., and Sternberg, P.W. (2011a). A sensory code for host seeking in parasitic nematodes. Curr. Biol. 21, 377–383.

    Article  PubMed  CAS  Google Scholar 

  • Hallem, E.A., Spencer, W.C., McWhirter, R.D., Zeller, G., Henz, S.R., Rätsch, G., Miller, D.M., Horvitz, H.R., Sternberg, P.W., and Ringstad, N. (2011b). Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 108, 254–259.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., and Luo, M. (2010). Loss of CO2 sensing by the olfactory system of CNGA3 knockout mice. Curr. Zool. 56, 793–799.

    CAS  Google Scholar 

  • Hansson, H.P. (1967). Histochemical demonstration of carbonic anhydrase activity. Histochemistry 11, 112–128.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J., Zhong, C., Ding, C., Chi, Q., Walz, A., Mombaerts, P., Matsunami, H., and Luo, M. (2007). Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317, 953–957.

    Article  PubMed  CAS  Google Scholar 

  • Jones, W.D., Volkan, P.C., Kadow, I.G., and Vosshall, L.B. (2007). Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Juilfs, D.M., Fülle, H.J., Zhao, A.Z., Houslay, M.D., Garbers, D.L., and Beavo, J.A. (1997). A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc. Natl. Acad. Sci. USA 94, 3388–3395.

    Article  PubMed  CAS  Google Scholar 

  • Kain, P., Chakraborty, T.S., Sundaram, S., Siddiqi, O., Rodrigues, V., and Hasan, G. (2008). Reduced odor responses from antennal neurons of G(q)alpha, phospholipase Cbeta, and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction. J. Neurosci. 28, 4745–4755.

    Article  PubMed  CAS  Google Scholar 

  • Kain, P., Chandrashekaran, S., Rodrigues, V., and Hasan, G. (2009). Drosophila mutants in phospholipid signaling have reduced olfactory responses as adults and larvae. J. Neurogenet. 23, 303–312.

    Article  PubMed  CAS  Google Scholar 

  • Kleineidam, C., and Roces, F. (2000). Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri. Insectes Soc. 47, 241–248.

    Article  Google Scholar 

  • Kwon, J.Y., Dahanukar, A., Weiss, L.A., and Carlson, J.R. (2007). The molecular basis of CO2 reception in Drosophila. Proc. Natl. Acad. Sci. USA 104, 3574–3578.

    Article  PubMed  CAS  Google Scholar 

  • Leinders-Zufall, T., Cockerham, R.E., Michalakis, S., Biel, M., Garbers, D.L., Reed, R.R., Zufall, F., and Munger, S.D. (2007). Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc. Natl. Acad. Sci. USA 104, 14507–14512.

    Article  PubMed  CAS  Google Scholar 

  • Lu, T., Qiu, Y.T., Wang, G., Kwon, J.Y., Rutzler, M., Kwon, H.-W., Pitts, R.J., van Loon, J., Takken, W., Carlson, J.R., et al. (2007). Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr. Biol. 17, 1533–1544.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, M.R., Angele, A., Kremmer, E., Kaupp, U.B., and Muller, F. (2000). A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 97, 10595–10600.

    Article  PubMed  CAS  Google Scholar 

  • Munger, S.D., Leinders-Zufall, T., McDougall, L.M., Cockerham, R.E., Schmid, A., Wandernoth, P., Wennemuth, G., Biel, M., Zufall, F., and Kelliher, K.R. (2010). An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr. Biol. 20, 1438–1444.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., and Vosshall, L.B. (2009). Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr. Opin. Neurobiol. 19, 284–292.

    Article  PubMed  CAS  Google Scholar 

  • Omer, S.M., and Gillies, M.T. (1971). Loss of response to carbon dioxide in palpectomized female mosquitoes. Entomol. Exp. Appl. 14, 251–252.

    Article  Google Scholar 

  • Pinto, M.C., Campbell-Lendrum, D.H., Lozovei, A.L., Teodoro, U., and Davies, C.R. (2001). Phlebotomine sandfly responses to carbon dioxide and human odour in the field. Med. Vet. Ent. 15, 132–139.

    Article  CAS  Google Scholar 

  • Robertson, H.M., and Kent, L.B. (2009). Evolution of the gene lineage encoding the carbon dioxide receptor in insects. J. Insect Sci. 9, 19.

    PubMed  Google Scholar 

  • Robertson, H.M., Warr, C., and Carlson, J.R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 100 (Suppl 2), 14537–14542.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L.B., and Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002–1006.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K., Tanaka, K., and Touhara, K. (2011). Sugar-regulated cation channel formed by an insect gustatory receptor. Proc. Natl. Acad. Sci. USA 108, 11680–11685.

    Article  PubMed  CAS  Google Scholar 

  • Scott, K., Brady, R., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C.S., and Axel, R. (2001). A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673.

    Article  PubMed  CAS  Google Scholar 

  • Seeley, T.D. (1974). Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. J. Insect Physiol. 20, 2301–2305.

    Article  PubMed  CAS  Google Scholar 

  • Stange, G. (1974). The influence of a carbonic anhydrase inhibitor on the function of the honeybee antennal CO2-receptors. J. Comp. Phys. A 91, 147–159.

    Article  CAS  Google Scholar 

  • Stange, G. (1992). High resolution measurement of atmospheric carbon dioxide concentration changes by the labial palp organ of the moth Heliothis armigera (Lepidoptera: Noctuidae). J. Comp. Phys. A 171, 317–324.

    Article  Google Scholar 

  • Stange, G., and Diesendorf, M. (1973). The response of the honeybee antennal CO2-receptors to N2O and Xe. J. Comp. Phys. A 86, 139–158.

    Article  CAS  Google Scholar 

  • Stange, G., and Stowe, S. (1999). Carbon-dioxide sensing structures in terrestrial arthropods. Microsc. Res. Tech. 47, 416–427.

    Article  PubMed  CAS  Google Scholar 

  • Stange, G., Monro, J., Stowe, S., and Osmond, C. (1995). The CO2 sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta. Oecologia 102, 341–352.

    Article  Google Scholar 

  • Steullet, P., and Guerin, P.M. (1992). Perception of breath components by the tropical bont tick, Amblyomma variegatum Fabricius (Ixodidae). I. CO2-excited and CO2-inhibited receptors. J. Comp. Phys. A 170, 665–676.

    Article  CAS  Google Scholar 

  • Suh, G.S.B., Wong, A.M., Hergarden, A.C., Wang, J.W., Simon, A.F., Benzer, S., Axel, R., and Anderson, D.J. (2004). A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854–859.

    Article  PubMed  CAS  Google Scholar 

  • Sun, L., Wang, H., Hu, J., Han, J., Matsunami, H., and Luo, M. (2009). Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc. Natl. Acad. Sci. USA 106, 2041–2046.

    Article  PubMed  CAS  Google Scholar 

  • Tashian, R.E. (1989). The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays 10, 186–192.

    Article  PubMed  CAS  Google Scholar 

  • Thom, C., Guerenstein, P.G., Mechaber, W.L., and Hildebrand, J.G. (2004). Floral CO2 reveals flower profitability to moths. J. Chem. Ecol. 30, 1285–1288.

    Article  PubMed  CAS  Google Scholar 

  • Turner, S.L., and Ray, A. (2009). Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants. Nature 461, 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Voskamp, K.E., Everaarts, E., and Den otter, C.J. (1999). Olfactory responses to attractants and repellents in tsetse. Med. Vet. Ent. 13, 386–392.

    Article  CAS  Google Scholar 

  • Wang, Y.Y., Chang, R.B., and Liman, E.R. (2010). TRPA1 is a component of the nociceptive response to CO2. J. Neurosci. 30, 12958–12963.

    Article  PubMed  CAS  Google Scholar 

  • Weidenmüller, A., Kleineidam, C., and Tautz, J. (2002). Collective control of nest climate parameters in bumblebee colonies. Anim. Behav. 63, 1065–1071.

    Article  Google Scholar 

  • Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M.C., Heller, R., Heinemann, S.H., and Hansson, B.S. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  • Yao, C.A., and Carlson, J.R. (2010). Role of G-proteins in odorsensing and CO2-sensing neurons in Drosophila. J. Neurosci. 30, 4562–4572.

    Article  PubMed  CAS  Google Scholar 

  • Young, J.M., Waters, H., Dong, C., Fülle, H.J., and Liman, E.R. (2007). Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS One 2, e884.

    Article  PubMed  Google Scholar 

  • Ziesmann, J. (1996). The physiology of an olfactory sensillum of the termite Schedorhinotermes lamanianus: carbon dioxide as a modulator of olfactory sensitivity. J. Comp. Phys. A 179, 123–133.

    Article  CAS  Google Scholar 

  • Zimmer, M., Gray, J.M., Pokala, N., Chang, A.J., Karow, D.S., Marletta, M.A., Hudson, M.L., Morton, D.B., Chronis, N., and Bargmann, C.I. (2009). Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61, 865–879.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walton Jones.

About this article

Cite this article

Jones, W. Olfactory carbon dioxide detection by insects and other animals. Mol Cells 35, 87–92 (2013). https://doi.org/10.1007/s10059-013-0035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0035-8

Keywords

Navigation